{Ninja-Shell}
Home
Info
Upload
Command
View /etc/passwd
cPanel Reset Password
Filename: //usr/share/perl/5.32/Math/BigInt/Calc.pm
package Math::BigInt::Calc; use 5.006001; use strict; use warnings; use Carp qw< carp croak >; use Math::BigInt::Lib; our $VERSION = '1.999818'; our @ISA = ('Math::BigInt::Lib'); # Package to store unsigned big integers in decimal and do math with them # Internally the numbers are stored in an array with at least 1 element, no # leading zero parts (except the first) and in base 1eX where X is determined # automatically at loading time to be the maximum possible value # todo: # - fully remove funky $# stuff in div() (maybe - that code scares me...) # USE_MUL: due to problems on certain os (os390, posix-bc) "* 1e-5" is used # instead of "/ 1e5" at some places, (marked with USE_MUL). Other platforms # BS2000, some Crays need USE_DIV instead. # The BEGIN block is used to determine which of the two variants gives the # correct result. # Beware of things like: # $i = $i * $y + $car; $car = int($i / $BASE); $i = $i % $BASE; # This works on x86, but fails on ARM (SA1100, iPAQ) due to who knows what # reasons. So, use this instead (slower, but correct): # $i = $i * $y + $car; $car = int($i / $BASE); $i -= $BASE * $car; ############################################################################## # global constants, flags and accessory # constants for easier life my ($BASE, $BASE_LEN, $RBASE, $MAX_VAL); my ($AND_BITS, $XOR_BITS, $OR_BITS); my ($AND_MASK, $XOR_MASK, $OR_MASK); sub _base_len { # Set/get the BASE_LEN and assorted other, related values. # Used only by the testsuite, the set variant is used only by the BEGIN # block below: my ($class, $b, $int) = @_; if (defined $b) { no warnings "redefine"; if ($] >= 5.008 && $int && $b > 7) { $BASE_LEN = $b; *_mul = \&_mul_use_div_64; *_div = \&_div_use_div_64; $BASE = int("1e" . $BASE_LEN); $MAX_VAL = $BASE-1; return $BASE_LEN unless wantarray; return ($BASE_LEN, $BASE, $AND_BITS, $XOR_BITS, $OR_BITS, $BASE_LEN, $MAX_VAL); } # find whether we can use mul or div in mul()/div() $BASE_LEN = $b + 1; my $caught = 0; while (--$BASE_LEN > 5) { $BASE = int("1e" . $BASE_LEN); $RBASE = abs('1e-' . $BASE_LEN); # see USE_MUL $caught = 0; $caught += 1 if (int($BASE * $RBASE) != 1); # should be 1 $caught += 2 if (int($BASE / $BASE) != 1); # should be 1 last if $caught != 3; } $BASE = int("1e" . $BASE_LEN); $RBASE = abs('1e-' . $BASE_LEN); # see USE_MUL $MAX_VAL = $BASE-1; # ($caught & 1) != 0 => cannot use MUL # ($caught & 2) != 0 => cannot use DIV if ($caught == 2) # 2 { # must USE_MUL since we cannot use DIV *_mul = \&_mul_use_mul; *_div = \&_div_use_mul; } else # 0 or 1 { # can USE_DIV instead *_mul = \&_mul_use_div; *_div = \&_div_use_div; } } return $BASE_LEN unless wantarray; return ($BASE_LEN, $BASE, $AND_BITS, $XOR_BITS, $OR_BITS, $BASE_LEN, $MAX_VAL); } sub _new { # Given a string representing an integer, returns a reference to an array # of integers, where each integer represents a chunk of the original input # integer. my ($class, $str) = @_; #unless ($str =~ /^([1-9]\d*|0)\z/) { # croak("Invalid input string '$str'"); #} my $input_len = length($str) - 1; # Shortcut for small numbers. return bless [ $str ], $class if $input_len < $BASE_LEN; my $format = "a" . (($input_len % $BASE_LEN) + 1); $format .= $] < 5.008 ? "a$BASE_LEN" x int($input_len / $BASE_LEN) : "(a$BASE_LEN)*"; my $self = [ reverse(map { 0 + $_ } unpack($format, $str)) ]; return bless $self, $class; } BEGIN { # from Daniel Pfeiffer: determine largest group of digits that is precisely # multipliable with itself plus carry # Test now changed to expect the proper pattern, not a result off by 1 or 2 my ($e, $num) = 3; # lowest value we will use is 3+1-1 = 3 do { $num = '9' x ++$e; $num *= $num + 1; } while $num =~ /9{$e}0{$e}/; # must be a certain pattern $e--; # last test failed, so retract one step # the limits below brush the problems with the test above under the rug: # the test should be able to find the proper $e automatically $e = 5 if $^O =~ /^uts/; # UTS get's some special treatment $e = 5 if $^O =~ /^unicos/; # unicos is also problematic (6 seems to work # there, but we play safe) my $int = 0; if ($e > 7) { use integer; my $e1 = 7; $num = 7; do { $num = ('9' x ++$e1) + 0; $num *= $num + 1; } while ("$num" =~ /9{$e1}0{$e1}/); # must be a certain pattern $e1--; # last test failed, so retract one step if ($e1 > 7) { $int = 1; $e = $e1; } } __PACKAGE__ -> _base_len($e, $int); # set and store use integer; # find out how many bits _and, _or and _xor can take (old default = 16) # I don't think anybody has yet 128 bit scalars, so let's play safe. local $^W = 0; # don't warn about 'nonportable number' $AND_BITS = 15; $XOR_BITS = 15; $OR_BITS = 15; # find max bits, we will not go higher than numberofbits that fit into $BASE # to make _and etc simpler (and faster for smaller, slower for large numbers) my $max = 16; while (2 ** $max < $BASE) { $max++; } { no integer; $max = 16 if $] < 5.006; # older Perls might not take >16 too well } my ($x, $y, $z); do { $AND_BITS++; $x = CORE::oct('0b' . '1' x $AND_BITS); $y = $x & $x; $z = (2 ** $AND_BITS) - 1; } while ($AND_BITS < $max && $x == $z && $y == $x); $AND_BITS --; # retreat one step do { $XOR_BITS++; $x = CORE::oct('0b' . '1' x $XOR_BITS); $y = $x ^ 0; $z = (2 ** $XOR_BITS) - 1; } while ($XOR_BITS < $max && $x == $z && $y == $x); $XOR_BITS --; # retreat one step do { $OR_BITS++; $x = CORE::oct('0b' . '1' x $OR_BITS); $y = $x | $x; $z = (2 ** $OR_BITS) - 1; } while ($OR_BITS < $max && $x == $z && $y == $x); $OR_BITS--; # retreat one step $AND_MASK = __PACKAGE__->_new(( 2 ** $AND_BITS )); $XOR_MASK = __PACKAGE__->_new(( 2 ** $XOR_BITS )); $OR_MASK = __PACKAGE__->_new(( 2 ** $OR_BITS )); # We can compute the approximate length no faster than the real length: *_alen = \&_len; } ############################################################################### sub _zero { # create a zero my $class = shift; return bless [ 0 ], $class; } sub _one { # create a one my $class = shift; return bless [ 1 ], $class; } sub _two { # create a two my $class = shift; return bless [ 2 ], $class; } sub _ten { # create a 10 my $class = shift; bless [ 10 ], $class; } sub _1ex { # create a 1Ex my $class = shift; my $rem = $_[0] % $BASE_LEN; # remainder my $parts = $_[0] / $BASE_LEN; # parts # 000000, 000000, 100 bless [ (0) x $parts, '1' . ('0' x $rem) ], $class; } sub _copy { # make a true copy my $class = shift; return bless [ @{ $_[0] } ], $class; } # catch and throw away sub import { } ############################################################################## # convert back to string and number sub _str { # Convert number from internal base 1eN format to string format. Internal # format is always normalized, i.e., no leading zeros. my $ary = $_[1]; my $idx = $#$ary; # index of last element if ($idx < 0) { # should not happen croak("$_[1] has no elements"); } # Handle first one differently, since it should not have any leading zeros. my $ret = int($ary->[$idx]); if ($idx > 0) { # Interestingly, the pre-padd method uses more time. # The old grep variant takes longer (14 vs. 10 sec). my $z = '0' x ($BASE_LEN - 1); while (--$idx >= 0) { $ret .= substr($z . $ary->[$idx], -$BASE_LEN); } } $ret; } sub _num { # Make a Perl scalar number (int/float) from a BigInt object. my $x = $_[1]; return $x->[0] if @$x == 1; # below $BASE # Start with the most significant element and work towards the least # significant element. Avoid multiplying "inf" (which happens if the number # overflows) with "0" (if there are zero elements in $x) since this gives # "nan" which propagates to the output. my $num = 0; for (my $i = $#$x ; $i >= 0 ; --$i) { $num *= $BASE; $num += $x -> [$i]; } return $num; } ############################################################################## # actual math code sub _add { # (ref to int_num_array, ref to int_num_array) # # Routine to add two base 1eX numbers stolen from Knuth Vol 2 Algorithm A # pg 231. There are separate routines to add and sub as per Knuth pg 233. # This routine modifies array x, but not y. my ($c, $x, $y) = @_; # $x + 0 => $x return $x if @$y == 1 && $y->[0] == 0; # 0 + $y => $y->copy if (@$x == 1 && $x->[0] == 0) { @$x = @$y; return $x; } # For each in Y, add Y to X and carry. If after that, something is left in # X, foreach in X add carry to X and then return X, carry. Trades one # "$j++" for having to shift arrays. my $i; my $car = 0; my $j = 0; for $i (@$y) { $x->[$j] -= $BASE if $car = (($x->[$j] += $i + $car) >= $BASE) ? 1 : 0; $j++; } while ($car != 0) { $x->[$j] -= $BASE if $car = (($x->[$j] += $car) >= $BASE) ? 1 : 0; $j++; } $x; } sub _inc { # (ref to int_num_array, ref to int_num_array) # Add 1 to $x, modify $x in place my ($c, $x) = @_; for my $i (@$x) { return $x if ($i += 1) < $BASE; # early out $i = 0; # overflow, next } push @$x, 1 if $x->[-1] == 0; # last overflowed, so extend $x; } sub _dec { # (ref to int_num_array, ref to int_num_array) # Sub 1 from $x, modify $x in place my ($c, $x) = @_; my $MAX = $BASE - 1; # since MAX_VAL based on BASE for my $i (@$x) { last if ($i -= 1) >= 0; # early out $i = $MAX; # underflow, next } pop @$x if $x->[-1] == 0 && @$x > 1; # last underflowed (but leave 0) $x; } sub _sub { # (ref to int_num_array, ref to int_num_array, swap) # # Subtract base 1eX numbers -- stolen from Knuth Vol 2 pg 232, $x > $y # subtract Y from X by modifying x in place my ($c, $sx, $sy, $s) = @_; my $car = 0; my $i; my $j = 0; if (!$s) { for $i (@$sx) { last unless defined $sy->[$j] || $car; $i += $BASE if $car = (($i -= ($sy->[$j] || 0) + $car) < 0); $j++; } # might leave leading zeros, so fix that return __strip_zeros($sx); } for $i (@$sx) { # We can't do an early out if $x < $y, since we need to copy the high # chunks from $y. Found by Bob Mathews. #last unless defined $sy->[$j] || $car; $sy->[$j] += $BASE if $car = ($sy->[$j] = $i - ($sy->[$j] || 0) - $car) < 0; $j++; } # might leave leading zeros, so fix that __strip_zeros($sy); } sub _mul_use_mul { # (ref to int_num_array, ref to int_num_array) # multiply two numbers in internal representation # modifies first arg, second need not be different from first my ($c, $xv, $yv) = @_; if (@$yv == 1) { # shortcut for two very short numbers (improved by Nathan Zook) works # also if xv and yv are the same reference, and handles also $x == 0 if (@$xv == 1) { if (($xv->[0] *= $yv->[0]) >= $BASE) { my $rem = $xv->[0] % $BASE; $xv->[1] = ($xv->[0] - $rem) * $RBASE; $xv->[0] = $rem; } return $xv; } # $x * 0 => 0 if ($yv->[0] == 0) { @$xv = (0); return $xv; } # multiply a large number a by a single element one, so speed up my $y = $yv->[0]; my $car = 0; my $rem; foreach my $i (@$xv) { $i = $i * $y + $car; $rem = $i % $BASE; $car = ($i - $rem) * $RBASE; $i = $rem; } push @$xv, $car if $car != 0; return $xv; } # shortcut for result $x == 0 => result = 0 return $xv if @$xv == 1 && $xv->[0] == 0; # since multiplying $x with $x fails, make copy in this case $yv = $c->_copy($xv) if $xv == $yv; # same references? my @prod = (); my ($prod, $rem, $car, $cty, $xi, $yi); for $xi (@$xv) { $car = 0; $cty = 0; # looping through this if $xi == 0 is silly - so optimize it away! $xi = (shift(@prod) || 0), next if $xi == 0; for $yi (@$yv) { $prod = $xi * $yi + ($prod[$cty] || 0) + $car; $rem = $prod % $BASE; $car = int(($prod - $rem) * $RBASE); $prod[$cty++] = $rem; } $prod[$cty] += $car if $car; # need really to check for 0? $xi = shift(@prod) || 0; # || 0 makes v5.005_3 happy } push @$xv, @prod; $xv; } sub _mul_use_div_64 { # (ref to int_num_array, ref to int_num_array) # multiply two numbers in internal representation # modifies first arg, second need not be different from first # works for 64 bit integer with "use integer" my ($c, $xv, $yv) = @_; use integer; if (@$yv == 1) { # shortcut for two very short numbers (improved by Nathan Zook) works # also if xv and yv are the same reference, and handles also $x == 0 if (@$xv == 1) { if (($xv->[0] *= $yv->[0]) >= $BASE) { $xv->[0] = $xv->[0] - ($xv->[1] = $xv->[0] / $BASE) * $BASE; } return $xv; } # $x * 0 => 0 if ($yv->[0] == 0) { @$xv = (0); return $xv; } # multiply a large number a by a single element one, so speed up my $y = $yv->[0]; my $car = 0; foreach my $i (@$xv) { #$i = $i * $y + $car; $car = $i / $BASE; $i -= $car * $BASE; $i = $i * $y + $car; $i -= ($car = $i / $BASE) * $BASE; } push @$xv, $car if $car != 0; return $xv; } # shortcut for result $x == 0 => result = 0 return $xv if @$xv == 1 && $xv->[0] == 0; # since multiplying $x with $x fails, make copy in this case $yv = $c->_copy($xv) if $xv == $yv; # same references? my @prod = (); my ($prod, $car, $cty, $xi, $yi); for $xi (@$xv) { $car = 0; $cty = 0; # looping through this if $xi == 0 is silly - so optimize it away! $xi = (shift(@prod) || 0), next if $xi == 0; for $yi (@$yv) { $prod = $xi * $yi + ($prod[$cty] || 0) + $car; $prod[$cty++] = $prod - ($car = $prod / $BASE) * $BASE; } $prod[$cty] += $car if $car; # need really to check for 0? $xi = shift(@prod) || 0; # || 0 makes v5.005_3 happy } push @$xv, @prod; $xv; } sub _mul_use_div { # (ref to int_num_array, ref to int_num_array) # multiply two numbers in internal representation # modifies first arg, second need not be different from first my ($c, $xv, $yv) = @_; if (@$yv == 1) { # shortcut for two very short numbers (improved by Nathan Zook) works # also if xv and yv are the same reference, and handles also $x == 0 if (@$xv == 1) { if (($xv->[0] *= $yv->[0]) >= $BASE) { my $rem = $xv->[0] % $BASE; $xv->[1] = ($xv->[0] - $rem) / $BASE; $xv->[0] = $rem; } return $xv; } # $x * 0 => 0 if ($yv->[0] == 0) { @$xv = (0); return $xv; } # multiply a large number a by a single element one, so speed up my $y = $yv->[0]; my $car = 0; my $rem; foreach my $i (@$xv) { $i = $i * $y + $car; $rem = $i % $BASE; $car = ($i - $rem) / $BASE; $i = $rem; } push @$xv, $car if $car != 0; return $xv; } # shortcut for result $x == 0 => result = 0 return $xv if @$xv == 1 && $xv->[0] == 0; # since multiplying $x with $x fails, make copy in this case $yv = $c->_copy($xv) if $xv == $yv; # same references? my @prod = (); my ($prod, $rem, $car, $cty, $xi, $yi); for $xi (@$xv) { $car = 0; $cty = 0; # looping through this if $xi == 0 is silly - so optimize it away! $xi = (shift(@prod) || 0), next if $xi == 0; for $yi (@$yv) { $prod = $xi * $yi + ($prod[$cty] || 0) + $car; $rem = $prod % $BASE; $car = ($prod - $rem) / $BASE; $prod[$cty++] = $rem; } $prod[$cty] += $car if $car; # need really to check for 0? $xi = shift(@prod) || 0; # || 0 makes v5.005_3 happy } push @$xv, @prod; $xv; } sub _div_use_mul { # ref to array, ref to array, modify first array and return remainder if # in list context my ($c, $x, $yorg) = @_; # the general div algorithm here is about O(N*N) and thus quite slow, so # we first check for some special cases and use shortcuts to handle them. # if both numbers have only one element: if (@$x == 1 && @$yorg == 1) { # shortcut, $yorg and $x are two small numbers my $rem = [ $x->[0] % $yorg->[0] ]; bless $rem, $c; $x->[0] = ($x->[0] - $rem->[0]) / $yorg->[0]; return ($x, $rem) if wantarray; return $x; } # if x has more than one, but y has only one element: if (@$yorg == 1) { my $rem; $rem = $c->_mod($c->_copy($x), $yorg) if wantarray; # shortcut, $y is < $BASE my $j = @$x; my $r = 0; my $y = $yorg->[0]; my $b; while ($j-- > 0) { $b = $r * $BASE + $x->[$j]; $r = $b % $y; $x->[$j] = ($b - $r) / $y; } pop(@$x) if @$x > 1 && $x->[-1] == 0; # remove any trailing zero return ($x, $rem) if wantarray; return $x; } # now x and y have more than one element # check whether y has more elements than x, if so, the result is 0 if (@$yorg > @$x) { my $rem; $rem = $c->_copy($x) if wantarray; # make copy @$x = 0; # set to 0 return ($x, $rem) if wantarray; # including remainder? return $x; # only x, which is [0] now } # check whether the numbers have the same number of elements, in that case # the result will fit into one element and can be computed efficiently if (@$yorg == @$x) { my $cmp = 0; for (my $j = $#$x ; $j >= 0 ; --$j) { last if $cmp = $x->[$j] - $yorg->[$j]; } if ($cmp == 0) { # x = y @$x = 1; return $x, $c->_zero() if wantarray; return $x; } if ($cmp < 0) { # x < y if (wantarray) { my $rem = $c->_copy($x); @$x = 0; return $x, $rem; } @$x = 0; return $x; } } # all other cases: my $y = $c->_copy($yorg); # always make copy to preserve my $tmp = $y->[-1] + 1; my $rem = $BASE % $tmp; my $dd = ($BASE - $rem) / $tmp; if ($dd != 1) { my $car = 0; for my $xi (@$x) { $xi = $xi * $dd + $car; $xi -= ($car = int($xi * $RBASE)) * $BASE; # see USE_MUL } push(@$x, $car); $car = 0; for my $yi (@$y) { $yi = $yi * $dd + $car; $yi -= ($car = int($yi * $RBASE)) * $BASE; # see USE_MUL } } else { push(@$x, 0); } # @q will accumulate the final result, $q contains the current computed # part of the final result my @q = (); my ($v2, $v1) = @$y[-2, -1]; $v2 = 0 unless $v2; while ($#$x > $#$y) { my ($u2, $u1, $u0) = @$x[-3 .. -1]; $u2 = 0 unless $u2; #warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n" # if $v1 == 0; my $tmp = $u0 * $BASE + $u1; my $rem = $tmp % $v1; my $q = $u0 == $v1 ? $MAX_VAL : (($tmp - $rem) / $v1); --$q while $v2 * $q > ($u0 * $BASE + $u1 - $q * $v1) * $BASE + $u2; if ($q) { my $prd; my ($car, $bar) = (0, 0); for (my $yi = 0, my $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) { $prd = $q * $y->[$yi] + $car; $prd -= ($car = int($prd * $RBASE)) * $BASE; # see USE_MUL $x->[$xi] += $BASE if $bar = (($x->[$xi] -= $prd + $bar) < 0); } if ($x->[-1] < $car + $bar) { $car = 0; --$q; for (my $yi = 0, my $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) { $x->[$xi] -= $BASE if $car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE); } } } pop(@$x); unshift(@q, $q); } if (wantarray) { my $d = bless [], $c; if ($dd != 1) { my $car = 0; my ($prd, $rem); for my $xi (reverse @$x) { $prd = $car * $BASE + $xi; $rem = $prd % $dd; $tmp = ($prd - $rem) / $dd; $car = $rem; unshift @$d, $tmp; } } else { @$d = @$x; } @$x = @q; __strip_zeros($x); __strip_zeros($d); return ($x, $d); } @$x = @q; __strip_zeros($x); $x; } sub _div_use_div_64 { # ref to array, ref to array, modify first array and return remainder if # in list context # This version works on integers use integer; my ($c, $x, $yorg) = @_; # the general div algorithm here is about O(N*N) and thus quite slow, so # we first check for some special cases and use shortcuts to handle them. # if both numbers have only one element: if (@$x == 1 && @$yorg == 1) { # shortcut, $yorg and $x are two small numbers if (wantarray) { my $rem = [ $x->[0] % $yorg->[0] ]; bless $rem, $c; $x->[0] = $x->[0] / $yorg->[0]; return ($x, $rem); } else { $x->[0] = $x->[0] / $yorg->[0]; return $x; } } # if x has more than one, but y has only one element: if (@$yorg == 1) { my $rem; $rem = $c->_mod($c->_copy($x), $yorg) if wantarray; # shortcut, $y is < $BASE my $j = @$x; my $r = 0; my $y = $yorg->[0]; my $b; while ($j-- > 0) { $b = $r * $BASE + $x->[$j]; $r = $b % $y; $x->[$j] = $b / $y; } pop(@$x) if @$x > 1 && $x->[-1] == 0; # remove any trailing zero return ($x, $rem) if wantarray; return $x; } # now x and y have more than one element # check whether y has more elements than x, if so, the result is 0 if (@$yorg > @$x) { my $rem; $rem = $c->_copy($x) if wantarray; # make copy @$x = 0; # set to 0 return ($x, $rem) if wantarray; # including remainder? return $x; # only x, which is [0] now } # check whether the numbers have the same number of elements, in that case # the result will fit into one element and can be computed efficiently if (@$yorg == @$x) { my $cmp = 0; for (my $j = $#$x ; $j >= 0 ; --$j) { last if $cmp = $x->[$j] - $yorg->[$j]; } if ($cmp == 0) { # x = y @$x = 1; return $x, $c->_zero() if wantarray; return $x; } if ($cmp < 0) { # x < y if (wantarray) { my $rem = $c->_copy($x); @$x = 0; return $x, $rem; } @$x = 0; return $x; } } # all other cases: my $y = $c->_copy($yorg); # always make copy to preserve my $tmp; my $dd = $BASE / ($y->[-1] + 1); if ($dd != 1) { my $car = 0; for my $xi (@$x) { $xi = $xi * $dd + $car; $xi -= ($car = $xi / $BASE) * $BASE; } push(@$x, $car); $car = 0; for my $yi (@$y) { $yi = $yi * $dd + $car; $yi -= ($car = $yi / $BASE) * $BASE; } } else { push(@$x, 0); } # @q will accumulate the final result, $q contains the current computed # part of the final result my @q = (); my ($v2, $v1) = @$y[-2, -1]; $v2 = 0 unless $v2; while ($#$x > $#$y) { my ($u2, $u1, $u0) = @$x[-3 .. -1]; $u2 = 0 unless $u2; #warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n" # if $v1 == 0; my $tmp = $u0 * $BASE + $u1; my $rem = $tmp % $v1; my $q = $u0 == $v1 ? $MAX_VAL : (($tmp - $rem) / $v1); --$q while $v2 * $q > ($u0 * $BASE + $u1 - $q * $v1) * $BASE + $u2; if ($q) { my $prd; my ($car, $bar) = (0, 0); for (my $yi = 0, my $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) { $prd = $q * $y->[$yi] + $car; $prd -= ($car = int($prd / $BASE)) * $BASE; $x->[$xi] += $BASE if $bar = (($x->[$xi] -= $prd + $bar) < 0); } if ($x->[-1] < $car + $bar) { $car = 0; --$q; for (my $yi = 0, my $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) { $x->[$xi] -= $BASE if $car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE); } } } pop(@$x); unshift(@q, $q); } if (wantarray) { my $d = bless [], $c; if ($dd != 1) { my $car = 0; my $prd; for my $xi (reverse @$x) { $prd = $car * $BASE + $xi; $car = $prd - ($tmp = $prd / $dd) * $dd; unshift @$d, $tmp; } } else { @$d = @$x; } @$x = @q; __strip_zeros($x); __strip_zeros($d); return ($x, $d); } @$x = @q; __strip_zeros($x); $x; } sub _div_use_div { # ref to array, ref to array, modify first array and return remainder if # in list context my ($c, $x, $yorg) = @_; # the general div algorithm here is about O(N*N) and thus quite slow, so # we first check for some special cases and use shortcuts to handle them. # if both numbers have only one element: if (@$x == 1 && @$yorg == 1) { # shortcut, $yorg and $x are two small numbers my $rem = [ $x->[0] % $yorg->[0] ]; bless $rem, $c; $x->[0] = ($x->[0] - $rem->[0]) / $yorg->[0]; return ($x, $rem) if wantarray; return $x; } # if x has more than one, but y has only one element: if (@$yorg == 1) { my $rem; $rem = $c->_mod($c->_copy($x), $yorg) if wantarray; # shortcut, $y is < $BASE my $j = @$x; my $r = 0; my $y = $yorg->[0]; my $b; while ($j-- > 0) { $b = $r * $BASE + $x->[$j]; $r = $b % $y; $x->[$j] = ($b - $r) / $y; } pop(@$x) if @$x > 1 && $x->[-1] == 0; # remove any trailing zero return ($x, $rem) if wantarray; return $x; } # now x and y have more than one element # check whether y has more elements than x, if so, the result is 0 if (@$yorg > @$x) { my $rem; $rem = $c->_copy($x) if wantarray; # make copy @$x = 0; # set to 0 return ($x, $rem) if wantarray; # including remainder? return $x; # only x, which is [0] now } # check whether the numbers have the same number of elements, in that case # the result will fit into one element and can be computed efficiently if (@$yorg == @$x) { my $cmp = 0; for (my $j = $#$x ; $j >= 0 ; --$j) { last if $cmp = $x->[$j] - $yorg->[$j]; } if ($cmp == 0) { # x = y @$x = 1; return $x, $c->_zero() if wantarray; return $x; } if ($cmp < 0) { # x < y if (wantarray) { my $rem = $c->_copy($x); @$x = 0; return $x, $rem; } @$x = 0; return $x; } } # all other cases: my $y = $c->_copy($yorg); # always make copy to preserve my $tmp = $y->[-1] + 1; my $rem = $BASE % $tmp; my $dd = ($BASE - $rem) / $tmp; if ($dd != 1) { my $car = 0; for my $xi (@$x) { $xi = $xi * $dd + $car; $rem = $xi % $BASE; $car = ($xi - $rem) / $BASE; $xi = $rem; } push(@$x, $car); $car = 0; for my $yi (@$y) { $yi = $yi * $dd + $car; $rem = $yi % $BASE; $car = ($yi - $rem) / $BASE; $yi = $rem; } } else { push(@$x, 0); } # @q will accumulate the final result, $q contains the current computed # part of the final result my @q = (); my ($v2, $v1) = @$y[-2, -1]; $v2 = 0 unless $v2; while ($#$x > $#$y) { my ($u2, $u1, $u0) = @$x[-3 .. -1]; $u2 = 0 unless $u2; #warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n" # if $v1 == 0; my $tmp = $u0 * $BASE + $u1; my $rem = $tmp % $v1; my $q = $u0 == $v1 ? $MAX_VAL : (($tmp - $rem) / $v1); --$q while $v2 * $q > ($u0 * $BASE + $u1 - $q * $v1) * $BASE + $u2; if ($q) { my $prd; my ($car, $bar) = (0, 0); for (my $yi = 0, my $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) { $prd = $q * $y->[$yi] + $car; $rem = $prd % $BASE; $car = ($prd - $rem) / $BASE; $prd -= $car * $BASE; $x->[$xi] += $BASE if $bar = (($x->[$xi] -= $prd + $bar) < 0); } if ($x->[-1] < $car + $bar) { $car = 0; --$q; for (my $yi = 0, my $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) { $x->[$xi] -= $BASE if $car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE); } } } pop(@$x); unshift(@q, $q); } if (wantarray) { my $d = bless [], $c; if ($dd != 1) { my $car = 0; my ($prd, $rem); for my $xi (reverse @$x) { $prd = $car * $BASE + $xi; $rem = $prd % $dd; $tmp = ($prd - $rem) / $dd; $car = $rem; unshift @$d, $tmp; } } else { @$d = @$x; } @$x = @q; __strip_zeros($x); __strip_zeros($d); return ($x, $d); } @$x = @q; __strip_zeros($x); $x; } ############################################################################## # testing sub _acmp { # Internal absolute post-normalized compare (ignore signs) # ref to array, ref to array, return <0, 0, >0 # Arrays must have at least one entry; this is not checked for. my ($c, $cx, $cy) = @_; # shortcut for short numbers return (($cx->[0] <=> $cy->[0]) <=> 0) if @$cx == 1 && @$cy == 1; # fast comp based on number of array elements (aka pseudo-length) my $lxy = (@$cx - @$cy) # or length of first element if same number of elements (aka difference 0) || # need int() here because sometimes the last element is '00018' vs '18' (length(int($cx->[-1])) - length(int($cy->[-1]))); return -1 if $lxy < 0; # already differs, ret return 1 if $lxy > 0; # ditto # manual way (abort if unequal, good for early ne) my $a; my $j = @$cx; while (--$j >= 0) { last if $a = $cx->[$j] - $cy->[$j]; } $a <=> 0; } sub _len { # compute number of digits in base 10 # int() because add/sub sometimes leaves strings (like '00005') instead of # '5' in this place, thus causing length() to report wrong length my $cx = $_[1]; (@$cx - 1) * $BASE_LEN + length(int($cx->[-1])); } sub _digit { # Return the nth digit. Zero is rightmost, so _digit(123, 0) gives 3. # Negative values count from the left, so _digit(123, -1) gives 1. my ($c, $x, $n) = @_; my $len = _len('', $x); $n += $len if $n < 0; # -1 last, -2 second-to-last # Math::BigInt::Calc returns 0 if N is out of range, but this is not done # by the other backend libraries. return "0" if $n < 0 || $n >= $len; # return 0 for digits out of range my $elem = int($n / $BASE_LEN); # index of array element my $digit = $n % $BASE_LEN; # index of digit within the element substr("0" x $BASE_LEN . "$x->[$elem]", -1 - $digit, 1); } sub _zeros { # Return number of trailing zeros in decimal. # Check each array element for having 0 at end as long as elem == 0 # Upon finding a elem != 0, stop. my $x = $_[1]; return 0 if @$x == 1 && $x->[0] == 0; my $zeros = 0; foreach my $elem (@$x) { if ($elem != 0) { $elem =~ /[^0](0*)\z/; $zeros += length($1); # count trailing zeros last; # early out } $zeros += $BASE_LEN; } $zeros; } ############################################################################## # _is_* routines sub _is_zero { # return true if arg is zero @{$_[1]} == 1 && $_[1]->[0] == 0 ? 1 : 0; } sub _is_even { # return true if arg is even $_[1]->[0] & 1 ? 0 : 1; } sub _is_odd { # return true if arg is odd $_[1]->[0] & 1 ? 1 : 0; } sub _is_one { # return true if arg is one @{$_[1]} == 1 && $_[1]->[0] == 1 ? 1 : 0; } sub _is_two { # return true if arg is two @{$_[1]} == 1 && $_[1]->[0] == 2 ? 1 : 0; } sub _is_ten { # return true if arg is ten @{$_[1]} == 1 && $_[1]->[0] == 10 ? 1 : 0; } sub __strip_zeros { # Internal normalization function that strips leading zeros from the array. # Args: ref to array my $x = shift; push @$x, 0 if @$x == 0; # div might return empty results, so fix it return $x if @$x == 1; # early out #print "strip: cnt $cnt i $i\n"; # '0', '3', '4', '0', '0', # 0 1 2 3 4 # cnt = 5, i = 4 # i = 4 # i = 3 # => fcnt = cnt - i (5-2 => 3, cnt => 5-1 = 4, throw away from 4th pos) # >= 1: skip first part (this can be zero) my $i = $#$x; while ($i > 0) { last if $x->[$i] != 0; $i--; } $i++; splice(@$x, $i) if $i < @$x; $x; } ############################################################################### # check routine to test internal state for corruptions sub _check { # used by the test suite my ($class, $x) = @_; my $msg = $class -> SUPER::_check($x); return $msg if $msg; my $n; eval { $n = @$x }; return "Not an array reference" unless $@ eq ''; return "Reference to an empty array" unless $n > 0; # The following fails with Math::BigInt::FastCalc because a # Math::BigInt::FastCalc "object" is an unblessed array ref. # #return 0 unless ref($x) eq $class; for (my $i = 0 ; $i <= $#$x ; ++ $i) { my $e = $x -> [$i]; return "Element at index $i is undefined" unless defined $e; return "Element at index $i is a '" . ref($e) . "', which is not a scalar" unless ref($e) eq ""; # It would be better to use the regex /^([1-9]\d*|0)\z/, but that fails # in Math::BigInt::FastCalc, because it sometimes creates array # elements like "000000". return "Element at index $i is '$e', which does not look like an" . " normal integer" unless $e =~ /^\d+\z/; return "Element at index $i is '$e', which is not smaller than" . " the base '$BASE'" if $e >= $BASE; return "Element at index $i (last element) is zero" if $#$x > 0 && $i == $#$x && $e == 0; } return 0; } ############################################################################### sub _mod { # if possible, use mod shortcut my ($c, $x, $yo) = @_; # slow way since $y too big if (@$yo > 1) { my ($xo, $rem) = $c->_div($x, $yo); @$x = @$rem; return $x; } my $y = $yo->[0]; # if both are single element arrays if (@$x == 1) { $x->[0] %= $y; return $x; } # if @$x has more than one element, but @$y is a single element my $b = $BASE % $y; if ($b == 0) { # when BASE % Y == 0 then (B * BASE) % Y == 0 # (B * BASE) % $y + A % Y => A % Y # so need to consider only last element: O(1) $x->[0] %= $y; } elsif ($b == 1) { # else need to go through all elements in @$x: O(N), but loop is a bit # simplified my $r = 0; foreach (@$x) { $r = ($r + $_) % $y; # not much faster, but heh... #$r += $_ % $y; $r %= $y; } $r = 0 if $r == $y; $x->[0] = $r; } else { # else need to go through all elements in @$x: O(N) my $r = 0; my $bm = 1; foreach (@$x) { $r = ($_ * $bm + $r) % $y; $bm = ($bm * $b) % $y; #$r += ($_ % $y) * $bm; #$bm *= $b; #$bm %= $y; #$r %= $y; } $r = 0 if $r == $y; $x->[0] = $r; } @$x = $x->[0]; # keep one element of @$x return $x; } ############################################################################## # shifts sub _rsft { my ($c, $x, $y, $n) = @_; if ($n != 10) { $n = $c->_new($n); return scalar $c->_div($x, $c->_pow($n, $y)); } # shortcut (faster) for shifting by 10) # multiples of $BASE_LEN my $dst = 0; # destination my $src = $c->_num($y); # as normal int my $xlen = (@$x - 1) * $BASE_LEN + length(int($x->[-1])); if ($src >= $xlen or ($src == $xlen and !defined $x->[1])) { # 12345 67890 shifted right by more than 10 digits => 0 splice(@$x, 1); # leave only one element $x->[0] = 0; # set to zero return $x; } my $rem = $src % $BASE_LEN; # remainder to shift $src = int($src / $BASE_LEN); # source if ($rem == 0) { splice(@$x, 0, $src); # even faster, 38.4 => 39.3 } else { my $len = @$x - $src; # elems to go my $vd; my $z = '0' x $BASE_LEN; $x->[ @$x ] = 0; # avoid || 0 test inside loop while ($dst < $len) { $vd = $z . $x->[$src]; $vd = substr($vd, -$BASE_LEN, $BASE_LEN - $rem); $src++; $vd = substr($z . $x->[$src], -$rem, $rem) . $vd; $vd = substr($vd, -$BASE_LEN, $BASE_LEN) if length($vd) > $BASE_LEN; $x->[$dst] = int($vd); $dst++; } splice(@$x, $dst) if $dst > 0; # kill left-over array elems pop(@$x) if $x->[-1] == 0 && @$x > 1; # kill last element if 0 } # else rem == 0 $x; } sub _lsft { my ($c, $x, $n, $b) = @_; return $x if $c->_is_zero($x) || $c->_is_zero($n); # For backwards compatibility, allow the base $b to be a scalar. $b = $c->_new($b) unless ref $b; # If the base is a power of 10, use shifting, since the internal # representation is in base 10eX. my $bstr = $c->_str($b); if ($bstr =~ /^1(0+)\z/) { # Adjust $n so that we're shifting in base 10. Do this by multiplying # $n by the base 10 logarithm of $b: $b ** $n = 10 ** (log10($b) * $n). my $log10b = length($1); $n = $c->_mul($c->_new($log10b), $n); $n = $c->_num($n); # shift-len as normal int # $q is the number of places to shift the elements within the array, # and $r is the number of places to shift the values within the # elements. my $r = $n % $BASE_LEN; my $q = ($n - $r) / $BASE_LEN; # If we must shift the values within the elements ... if ($r) { my $i = @$x; # index $x->[$i] = 0; # initialize most significant element my $z = '0' x $BASE_LEN; my $vd; while ($i >= 0) { $vd = $x->[$i]; $vd = $z . $vd; $vd = substr($vd, $r - $BASE_LEN, $BASE_LEN - $r); $vd .= $i > 0 ? substr($z . $x->[$i - 1], -$BASE_LEN, $r) : '0' x $r; $vd = substr($vd, -$BASE_LEN, $BASE_LEN) if length($vd) > $BASE_LEN; $x->[$i] = int($vd); # e.g., "0...048" -> 48 etc. $i--; } pop(@$x) if $x->[-1] == 0; # if most significant element is zero } # If we must shift the elements within the array ... if ($q) { unshift @$x, (0) x $q; } } else { $x = $c->_mul($x, $c->_pow($b, $n)); } return $x; } sub _pow { # power of $x to $y # ref to array, ref to array, return ref to array my ($c, $cx, $cy) = @_; if (@$cy == 1 && $cy->[0] == 0) { splice(@$cx, 1); $cx->[0] = 1; # y == 0 => x => 1 return $cx; } if ((@$cx == 1 && $cx->[0] == 1) || # x == 1 (@$cy == 1 && $cy->[0] == 1)) # or y == 1 { return $cx; } if (@$cx == 1 && $cx->[0] == 0) { splice (@$cx, 1); $cx->[0] = 0; # 0 ** y => 0 (if not y <= 0) return $cx; } my $pow2 = $c->_one(); my $y_bin = $c->_as_bin($cy); $y_bin =~ s/^0b//; my $len = length($y_bin); while (--$len > 0) { $c->_mul($pow2, $cx) if substr($y_bin, $len, 1) eq '1'; # is odd? $c->_mul($cx, $cx); } $c->_mul($cx, $pow2); $cx; } sub _nok { # Return binomial coefficient (n over k). # Given refs to arrays, return ref to array. # First input argument is modified. my ($c, $n, $k) = @_; # If k > n/2, or, equivalently, 2*k > n, compute nok(n, k) as # nok(n, n-k), to minimize the number if iterations in the loop. { my $twok = $c->_mul($c->_two(), $c->_copy($k)); # 2 * k if ($c->_acmp($twok, $n) > 0) { # if 2*k > n $k = $c->_sub($c->_copy($n), $k); # k = n - k } } # Example: # # / 7 \ 7! 1*2*3*4 * 5*6*7 5 * 6 * 7 6 7 # | | = --------- = --------------- = --------- = 5 * - * - # \ 3 / (7-3)! 3! 1*2*3*4 * 1*2*3 1 * 2 * 3 2 3 if ($c->_is_zero($k)) { @$n = 1; } else { # Make a copy of the original n, since we'll be modifying n in-place. my $n_orig = $c->_copy($n); # n = 5, f = 6, d = 2 (cf. example above) $c->_sub($n, $k); $c->_inc($n); my $f = $c->_copy($n); $c->_inc($f); my $d = $c->_two(); # while f <= n (the original n, that is) ... while ($c->_acmp($f, $n_orig) <= 0) { # n = (n * f / d) == 5 * 6 / 2 (cf. example above) $c->_mul($n, $f); $c->_div($n, $d); # f = 7, d = 3 (cf. example above) $c->_inc($f); $c->_inc($d); } } return $n; } my @factorials = ( 1, 1, 2, 2*3, 2*3*4, 2*3*4*5, 2*3*4*5*6, 2*3*4*5*6*7, ); sub _fac { # factorial of $x # ref to array, return ref to array my ($c, $cx) = @_; if ((@$cx == 1) && ($cx->[0] <= 7)) { $cx->[0] = $factorials[$cx->[0]]; # 0 => 1, 1 => 1, 2 => 2 etc. return $cx; } if ((@$cx == 1) && # we do this only if $x >= 12 and $x <= 7000 ($cx->[0] >= 12 && $cx->[0] < 7000)) { # Calculate (k-j) * (k-j+1) ... k .. (k+j-1) * (k + j) # See http://blogten.blogspot.com/2007/01/calculating-n.html # The above series can be expressed as factors: # k * k - (j - i) * 2 # We cache k*k, and calculate (j * j) as the sum of the first j odd integers # This will not work when N exceeds the storage of a Perl scalar, however, # in this case the algorithm would be way too slow to terminate, anyway. # As soon as the last element of $cx is 0, we split it up and remember # how many zeors we got so far. The reason is that n! will accumulate # zeros at the end rather fast. my $zero_elements = 0; # If n is even, set n = n -1 my $k = $c->_num($cx); my $even = 1; if (($k & 1) == 0) { $even = $k; $k --; } # set k to the center point $k = ($k + 1) / 2; # print "k $k even: $even\n"; # now calculate k * k my $k2 = $k * $k; my $odd = 1; my $sum = 1; my $i = $k - 1; # keep reference to x my $new_x = $c->_new($k * $even); @$cx = @$new_x; if ($cx->[0] == 0) { $zero_elements ++; shift @$cx; } # print STDERR "x = ", $c->_str($cx), "\n"; my $BASE2 = int(sqrt($BASE))-1; my $j = 1; while ($j <= $i) { my $m = ($k2 - $sum); $odd += 2; $sum += $odd; $j++; while ($j <= $i && ($m < $BASE2) && (($k2 - $sum) < $BASE2)) { $m *= ($k2 - $sum); $odd += 2; $sum += $odd; $j++; # print STDERR "\n k2 $k2 m $m sum $sum odd $odd\n"; sleep(1); } if ($m < $BASE) { $c->_mul($cx, [$m]); } else { $c->_mul($cx, $c->_new($m)); } if ($cx->[0] == 0) { $zero_elements ++; shift @$cx; } # print STDERR "Calculate $k2 - $sum = $m (x = ", $c->_str($cx), ")\n"; } # multiply in the zeros again unshift @$cx, (0) x $zero_elements; return $cx; } # go forward until $base is exceeded limit is either $x steps (steps == 100 # means a result always too high) or $base. my $steps = 100; $steps = $cx->[0] if @$cx == 1; my $r = 2; my $cf = 3; my $step = 2; my $last = $r; while ($r * $cf < $BASE && $step < $steps) { $last = $r; $r *= $cf++; $step++; } if ((@$cx == 1) && $step == $cx->[0]) { # completely done, so keep reference to $x and return $cx->[0] = $r; return $cx; } # now we must do the left over steps my $n; # steps still to do if (@$cx == 1) { $n = $cx->[0]; } else { $n = $c->_copy($cx); } # Set $cx to the last result below $BASE (but keep ref to $x) $cx->[0] = $last; splice (@$cx, 1); # As soon as the last element of $cx is 0, we split it up and remember # how many zeors we got so far. The reason is that n! will accumulate # zeros at the end rather fast. my $zero_elements = 0; # do left-over steps fit into a scalar? if (ref $n eq 'ARRAY') { # No, so use slower inc() & cmp() # ($n is at least $BASE here) my $base_2 = int(sqrt($BASE)) - 1; #print STDERR "base_2: $base_2\n"; while ($step < $base_2) { if ($cx->[0] == 0) { $zero_elements ++; shift @$cx; } my $b = $step * ($step + 1); $step += 2; $c->_mul($cx, [$b]); } $step = [$step]; while ($c->_acmp($step, $n) <= 0) { if ($cx->[0] == 0) { $zero_elements ++; shift @$cx; } $c->_mul($cx, $step); $c->_inc($step); } } else { # Yes, so we can speed it up slightly # print "# left over steps $n\n"; my $base_4 = int(sqrt(sqrt($BASE))) - 2; #print STDERR "base_4: $base_4\n"; my $n4 = $n - 4; while ($step < $n4 && $step < $base_4) { if ($cx->[0] == 0) { $zero_elements ++; shift @$cx; } my $b = $step * ($step + 1); $step += 2; $b *= $step * ($step + 1); $step += 2; $c->_mul($cx, [$b]); } my $base_2 = int(sqrt($BASE)) - 1; my $n2 = $n - 2; #print STDERR "base_2: $base_2\n"; while ($step < $n2 && $step < $base_2) { if ($cx->[0] == 0) { $zero_elements ++; shift @$cx; } my $b = $step * ($step + 1); $step += 2; $c->_mul($cx, [$b]); } # do what's left over while ($step <= $n) { $c->_mul($cx, [$step]); $step++; if ($cx->[0] == 0) { $zero_elements ++; shift @$cx; } } } # multiply in the zeros again unshift @$cx, (0) x $zero_elements; $cx; # return result } sub _log_int { # calculate integer log of $x to base $base # ref to array, ref to array - return ref to array my ($c, $x, $base) = @_; # X == 0 => NaN return if @$x == 1 && $x->[0] == 0; # BASE 0 or 1 => NaN return if @$base == 1 && $base->[0] < 2; # X == 1 => 0 (is exact) if (@$x == 1 && $x->[0] == 1) { @$x = 0; return $x, 1; } my $cmp = $c->_acmp($x, $base); # X == BASE => 1 (is exact) if ($cmp == 0) { @$x = 1; return $x, 1; } # 1 < X < BASE => 0 (is truncated) if ($cmp < 0) { @$x = 0; return $x, 0; } my $x_org = $c->_copy($x); # preserve x # Compute a guess for the result based on: # $guess = int ( length_in_base_10(X) / ( log(base) / log(10) ) ) my $len = $c->_len($x_org); my $log = log($base->[-1]) / log(10); # for each additional element in $base, we add $BASE_LEN to the result, # based on the observation that log($BASE, 10) is BASE_LEN and # log(x*y) == log(x) + log(y): $log += (@$base - 1) * $BASE_LEN; # calculate now a guess based on the values obtained above: my $res = int($len / $log); @$x = $res; my $trial = $c->_pow($c->_copy($base), $x); my $acmp = $c->_acmp($trial, $x_org); # Did we get the exact result? return $x, 1 if $acmp == 0; # Too small? while ($acmp < 0) { $c->_mul($trial, $base); $c->_inc($x); $acmp = $c->_acmp($trial, $x_org); } # Too big? while ($acmp > 0) { $c->_div($trial, $base); $c->_dec($x); $acmp = $c->_acmp($trial, $x_org); } return $x, 1 if $acmp == 0; # result is exact return $x, 0; # result is too small } # for debugging: use constant DEBUG => 0; my $steps = 0; sub steps { $steps }; sub _sqrt { # square-root of $x in place # Compute a guess of the result (by rule of thumb), then improve it via # Newton's method. my ($c, $x) = @_; if (@$x == 1) { # fits into one Perl scalar, so result can be computed directly $x->[0] = int(sqrt($x->[0])); return $x; } my $y = $c->_copy($x); # hopefully _len/2 is < $BASE, the -1 is to always undershot the guess # since our guess will "grow" my $l = int(($c->_len($x)-1) / 2); my $lastelem = $x->[-1]; # for guess my $elems = @$x - 1; # not enough digits, but could have more? if ((length($lastelem) <= 3) && ($elems > 1)) { # right-align with zero pad my $len = length($lastelem) & 1; print "$lastelem => " if DEBUG; $lastelem .= substr($x->[-2] . '0' x $BASE_LEN, 0, $BASE_LEN); # former odd => make odd again, or former even to even again $lastelem = $lastelem / 10 if (length($lastelem) & 1) != $len; print "$lastelem\n" if DEBUG; } # construct $x (instead of $c->_lsft($x, $l, 10) my $r = $l % $BASE_LEN; # 10000 00000 00000 00000 ($BASE_LEN=5) $l = int($l / $BASE_LEN); print "l = $l " if DEBUG; splice @$x, $l; # keep ref($x), but modify it # we make the first part of the guess not '1000...0' but int(sqrt($lastelem)) # that gives us: # 14400 00000 => sqrt(14400) => guess first digits to be 120 # 144000 000000 => sqrt(144000) => guess 379 print "$lastelem (elems $elems) => " if DEBUG; $lastelem = $lastelem / 10 if ($elems & 1 == 1); # odd or even? my $g = sqrt($lastelem); $g =~ s/\.//; # 2.345 => 2345 $r -= 1 if $elems & 1 == 0; # 70 => 7 # padd with zeros if result is too short $x->[$l--] = int(substr($g . '0' x $r, 0, $r+1)); print "now ", $x->[-1] if DEBUG; print " would have been ", int('1' . '0' x $r), "\n" if DEBUG; # If @$x > 1, we could compute the second elem of the guess, too, to create # an even better guess. Not implemented yet. Does it improve performance? $x->[$l--] = 0 while ($l >= 0); # all other digits of guess are zero print "start x= ", $c->_str($x), "\n" if DEBUG; my $two = $c->_two(); my $last = $c->_zero(); my $lastlast = $c->_zero(); $steps = 0 if DEBUG; while ($c->_acmp($last, $x) != 0 && $c->_acmp($lastlast, $x) != 0) { $steps++ if DEBUG; $lastlast = $c->_copy($last); $last = $c->_copy($x); $c->_add($x, $c->_div($c->_copy($y), $x)); $c->_div($x, $two ); print " x= ", $c->_str($x), "\n" if DEBUG; } print "\nsteps in sqrt: $steps, " if DEBUG; $c->_dec($x) if $c->_acmp($y, $c->_mul($c->_copy($x), $x)) < 0; # overshot? print " final ", $x->[-1], "\n" if DEBUG; $x; } sub _root { # Take n'th root of $x in place. my ($c, $x, $n) = @_; # Small numbers. if (@$x == 1 && @$n == 1) { # Result can be computed directly. Adjust initial result for numerical # errors, e.g., int(1000**(1/3)) is 2, not 3. my $y = int($x->[0] ** (1 / $n->[0])); my $yp1 = $y + 1; $y = $yp1 if $yp1 ** $n->[0] == $x->[0]; $x->[0] = $y; return $x; } # If x <= n, the result is always (truncated to) 1. if ((@$x > 1 || $x -> [0] > 0) && # if x is non-zero ... $c -> _acmp($x, $n) <= 0) # ... and x <= n { my $one = $x -> _one(); @$x = @$one; return $x; } # If $n is a power of two, take sqrt($x) repeatedly, e.g., root($x, 4) = # sqrt(sqrt($x)), root($x, 8) = sqrt(sqrt(sqrt($x))). my $b = $c -> _as_bin($n); if ($b =~ /0b1(0+)$/) { my $count = length($1); # 0b100 => len('00') => 2 my $cnt = $count; # counter for loop unshift @$x, 0; # add one element, together with one # more below in the loop this makes 2 while ($cnt-- > 0) { # 'Inflate' $x by adding one element, basically computing # $x * $BASE * $BASE. This gives us more $BASE_LEN digits for # result since len(sqrt($X)) approx == len($x) / 2. unshift @$x, 0; # Calculate sqrt($x), $x is now one element to big, again. In the # next round we make that two, again. $c -> _sqrt($x); } # $x is now one element too big, so truncate result by removing it. shift @$x; return $x; } my $DEBUG = 0; # Now the general case. This works by finding an initial guess. If this # guess is incorrect, a relatively small delta is chosen. This delta is # used to find a lower and upper limit for the correct value. The delta is # doubled in each iteration. When a lower and upper limit is found, # bisection is applied to narrow down the region until we have the correct # value. # Split x into mantissa and exponent in base 10, so that # # x = xm * 10^xe, where 0 < xm < 1 and xe is an integer my $x_str = $c -> _str($x); my $xm = "." . $x_str; my $xe = length($x_str); # From this we compute the base 10 logarithm of x # # log_10(x) = log_10(xm) + log_10(xe^10) # = log(xm)/log(10) + xe # # and then the base 10 logarithm of y, where y = x^(1/n) # # log_10(y) = log_10(x)/n my $log10x = log($xm) / log(10) + $xe; my $log10y = $log10x / $c -> _num($n); # And from this we compute ym and ye, the mantissa and exponent (in # base 10) of y, where 1 < ym <= 10 and ye is an integer. my $ye = int $log10y; my $ym = 10 ** ($log10y - $ye); # Finally, we scale the mantissa and exponent to incraese the integer # part of ym, before building the string representing our guess of y. if ($DEBUG) { print "\n"; print "xm = $xm\n"; print "xe = $xe\n"; print "log10x = $log10x\n"; print "log10y = $log10y\n"; print "ym = $ym\n"; print "ye = $ye\n"; print "\n"; } my $d = $ye < 15 ? $ye : 15; $ym *= 10 ** $d; $ye -= $d; my $y_str = sprintf('%.0f', $ym) . "0" x $ye; my $y = $c -> _new($y_str); if ($DEBUG) { print "ym = $ym\n"; print "ye = $ye\n"; print "\n"; print "y_str = $y_str (initial guess)\n"; print "\n"; } # See if our guess y is correct. my $trial = $c -> _pow($c -> _copy($y), $n); my $acmp = $c -> _acmp($trial, $x); if ($acmp == 0) { @$x = @$y; return $x; } # Find a lower and upper limit for the correct value of y. Start off with a # delta value that is approximately the size of the accuracy of the guess. my $lower; my $upper; my $delta = $c -> _new("1" . ("0" x $ye)); my $two = $c -> _two(); if ($acmp < 0) { $lower = $y; while ($acmp < 0) { $upper = $c -> _add($c -> _copy($lower), $delta); if ($DEBUG) { print "lower = $lower\n"; print "upper = $upper\n"; print "delta = $delta\n"; print "\n"; } $acmp = $c -> _acmp($c -> _pow($c -> _copy($upper), $n), $x); if ($acmp == 0) { @$x = @$upper; return $x; } $delta = $c -> _mul($delta, $two); } } elsif ($acmp > 0) { $upper = $y; while ($acmp > 0) { if ($c -> _acmp($upper, $delta) <= 0) { $lower = $c -> _zero(); last; } $lower = $c -> _sub($c -> _copy($upper), $delta); if ($DEBUG) { print "lower = $lower\n"; print "upper = $upper\n"; print "delta = $delta\n"; print "\n"; } $acmp = $c -> _acmp($c -> _pow($c -> _copy($lower), $n), $x); if ($acmp == 0) { @$x = @$lower; return $x; } $delta = $c -> _mul($delta, $two); } } # Use bisection to narrow down the interval. my $one = $c -> _one(); { $delta = $c -> _sub($c -> _copy($upper), $lower); if ($c -> _acmp($delta, $one) <= 0) { @$x = @$lower; return $x; } if ($DEBUG) { print "lower = $lower\n"; print "upper = $upper\n"; print "delta = $delta\n"; print "\n"; } $delta = $c -> _div($delta, $two); my $middle = $c -> _add($c -> _copy($lower), $delta); $acmp = $c -> _acmp($c -> _pow($c -> _copy($middle), $n), $x); if ($acmp < 0) { $lower = $middle; } elsif ($acmp > 0) { $upper = $middle; } else { @$x = @$middle; return $x; } redo; } $x; } ############################################################################## # binary stuff sub _and { my ($c, $x, $y) = @_; # the shortcut makes equal, large numbers _really_ fast, and makes only a # very small performance drop for small numbers (e.g. something with less # than 32 bit) Since we optimize for large numbers, this is enabled. return $x if $c->_acmp($x, $y) == 0; # shortcut my $m = $c->_one(); my ($xr, $yr); my $mask = $AND_MASK; my $x1 = $c->_copy($x); my $y1 = $c->_copy($y); my $z = $c->_zero(); use integer; until ($c->_is_zero($x1) || $c->_is_zero($y1)) { ($x1, $xr) = $c->_div($x1, $mask); ($y1, $yr) = $c->_div($y1, $mask); $c->_add($z, $c->_mul([ 0 + $xr->[0] & 0 + $yr->[0] ], $m)); $c->_mul($m, $mask); } @$x = @$z; return $x; } sub _xor { my ($c, $x, $y) = @_; return $c->_zero() if $c->_acmp($x, $y) == 0; # shortcut (see -and) my $m = $c->_one(); my ($xr, $yr); my $mask = $XOR_MASK; my $x1 = $c->_copy($x); my $y1 = $c->_copy($y); # make copy my $z = $c->_zero(); use integer; until ($c->_is_zero($x1) || $c->_is_zero($y1)) { ($x1, $xr) = $c->_div($x1, $mask); ($y1, $yr) = $c->_div($y1, $mask); # make ints() from $xr, $yr (see _and()) #$b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; } #$b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; } #$c->_add($x, $c->_mul($c->_new($xrr ^ $yrr)), $m) ); $c->_add($z, $c->_mul([ 0 + $xr->[0] ^ 0 + $yr->[0] ], $m)); $c->_mul($m, $mask); } # the loop stops when the shorter of the two numbers is exhausted # the remainder of the longer one will survive bit-by-bit, so we simple # multiply-add it in $c->_add($z, $c->_mul($x1, $m) ) if !$c->_is_zero($x1); $c->_add($z, $c->_mul($y1, $m) ) if !$c->_is_zero($y1); @$x = @$z; return $x; } sub _or { my ($c, $x, $y) = @_; return $x if $c->_acmp($x, $y) == 0; # shortcut (see _and) my $m = $c->_one(); my ($xr, $yr); my $mask = $OR_MASK; my $x1 = $c->_copy($x); my $y1 = $c->_copy($y); # make copy my $z = $c->_zero(); use integer; until ($c->_is_zero($x1) || $c->_is_zero($y1)) { ($x1, $xr) = $c->_div($x1, $mask); ($y1, $yr) = $c->_div($y1, $mask); # make ints() from $xr, $yr (see _and()) # $b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; } # $b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; } # $c->_add($x, $c->_mul(_new( $c, ($xrr | $yrr) ), $m) ); $c->_add($z, $c->_mul([ 0 + $xr->[0] | 0 + $yr->[0] ], $m)); $c->_mul($m, $mask); } # the loop stops when the shorter of the two numbers is exhausted # the remainder of the longer one will survive bit-by-bit, so we simple # multiply-add it in $c->_add($z, $c->_mul($x1, $m) ) if !$c->_is_zero($x1); $c->_add($z, $c->_mul($y1, $m) ) if !$c->_is_zero($y1); @$x = @$z; return $x; } sub _as_hex { # convert a decimal number to hex (ref to array, return ref to string) my ($c, $x) = @_; # fits into one element (handle also 0x0 case) return sprintf("0x%x", $x->[0]) if @$x == 1; my $x1 = $c->_copy($x); my $es = ''; my ($xr, $h, $x10000); if ($] >= 5.006) { $x10000 = [ 0x10000 ]; $h = 'h4'; } else { $x10000 = [ 0x1000 ]; $h = 'h3'; } while (@$x1 != 1 || $x1->[0] != 0) # _is_zero() { ($x1, $xr) = $c->_div($x1, $x10000); $es .= unpack($h, pack('V', $xr->[0])); } $es = reverse $es; $es =~ s/^[0]+//; # strip leading zeros '0x' . $es; # return result prepended with 0x } sub _as_bin { # convert a decimal number to bin (ref to array, return ref to string) my ($c, $x) = @_; # fits into one element (and Perl recent enough), handle also 0b0 case # handle zero case for older Perls if ($] <= 5.005 && @$x == 1 && $x->[0] == 0) { my $t = '0b0'; return $t; } if (@$x == 1 && $] >= 5.006) { my $t = sprintf("0b%b", $x->[0]); return $t; } my $x1 = $c->_copy($x); my $es = ''; my ($xr, $b, $x10000); if ($] >= 5.006) { $x10000 = [ 0x10000 ]; $b = 'b16'; } else { $x10000 = [ 0x1000 ]; $b = 'b12'; } while (!(@$x1 == 1 && $x1->[0] == 0)) # _is_zero() { ($x1, $xr) = $c->_div($x1, $x10000); $es .= unpack($b, pack('v', $xr->[0])); } $es = reverse $es; $es =~ s/^[0]+//; # strip leading zeros '0b' . $es; # return result prepended with 0b } sub _as_oct { # convert a decimal number to octal (ref to array, return ref to string) my ($c, $x) = @_; # fits into one element (handle also 0 case) return sprintf("0%o", $x->[0]) if @$x == 1; my $x1 = $c->_copy($x); my $es = ''; my $xr; my $x1000 = [ 0100000 ]; while (@$x1 != 1 || $x1->[0] != 0) # _is_zero() { ($x1, $xr) = $c->_div($x1, $x1000); $es .= reverse sprintf("%05o", $xr->[0]); } $es = reverse $es; $es =~ s/^0+//; # strip leading zeros '0' . $es; # return result prepended with 0 } sub _from_oct { # convert a octal number to decimal (string, return ref to array) my ($c, $os) = @_; # for older Perls, play safe my $m = [ 0100000 ]; my $d = 5; # 5 digits at a time my $mul = $c->_one(); my $x = $c->_zero(); my $len = int((length($os) - 1) / $d); # $d digit parts, w/o the '0' my $val; my $i = -$d; while ($len >= 0) { $val = substr($os, $i, $d); # get oct digits $val = CORE::oct($val); $i -= $d; $len --; my $adder = [ $val ]; $c->_add($x, $c->_mul($adder, $mul)) if $val != 0; $c->_mul($mul, $m) if $len >= 0; # skip last mul } $x; } sub _from_hex { # convert a hex number to decimal (string, return ref to array) my ($c, $hs) = @_; my $m = $c->_new(0x10000000); # 28 bit at a time (<32 bit!) my $d = 7; # 7 digits at a time my $mul = $c->_one(); my $x = $c->_zero(); my $len = int((length($hs) - 2) / $d); # $d digit parts, w/o the '0x' my $val; my $i = -$d; while ($len >= 0) { $val = substr($hs, $i, $d); # get hex digits $val =~ s/^0x// if $len == 0; # for last part only because $val = CORE::hex($val); # hex does not like wrong chars $i -= $d; $len --; my $adder = [ $val ]; # if the resulting number was to big to fit into one element, create a # two-element version (bug found by Mark Lakata - Thanx!) if (CORE::length($val) > $BASE_LEN) { $adder = $c->_new($val); } $c->_add($x, $c->_mul($adder, $mul)) if $val != 0; $c->_mul($mul, $m) if $len >= 0; # skip last mul } $x; } sub _from_bin { # convert a hex number to decimal (string, return ref to array) my ($c, $bs) = @_; # instead of converting X (8) bit at a time, it is faster to "convert" the # number to hex, and then call _from_hex. my $hs = $bs; $hs =~ s/^[+-]?0b//; # remove sign and 0b my $l = length($hs); # bits $hs = '0' x (8 - ($l % 8)) . $hs if ($l % 8) != 0; # padd left side w/ 0 my $h = '0x' . unpack('H*', pack ('B*', $hs)); # repack as hex $c->_from_hex($h); } ############################################################################## # special modulus functions sub _modinv { # modular multiplicative inverse my ($c, $x, $y) = @_; # modulo zero if ($c->_is_zero($y)) { return undef, undef; } # modulo one if ($c->_is_one($y)) { return $c->_zero(), '+'; } my $u = $c->_zero(); my $v = $c->_one(); my $a = $c->_copy($y); my $b = $c->_copy($x); # Euclid's Algorithm for bgcd(), only that we calc bgcd() ($a) and the result # ($u) at the same time. See comments in BigInt for why this works. my $q; my $sign = 1; { ($a, $q, $b) = ($b, $c->_div($a, $b)); # step 1 last if $c->_is_zero($b); my $t = $c->_add( # step 2: $c->_mul($c->_copy($v), $q), # t = v * q $u); # + u $u = $v; # u = v $v = $t; # v = t $sign = -$sign; redo; } # if the gcd is not 1, then return NaN return (undef, undef) unless $c->_is_one($a); ($v, $sign == 1 ? '+' : '-'); } sub _modpow { # modulus of power ($x ** $y) % $z my ($c, $num, $exp, $mod) = @_; # a^b (mod 1) = 0 for all a and b if ($c->_is_one($mod)) { @$num = 0; return $num; } # 0^a (mod m) = 0 if m != 0, a != 0 # 0^0 (mod m) = 1 if m != 0 if ($c->_is_zero($num)) { if ($c->_is_zero($exp)) { @$num = 1; } else { @$num = 0; } return $num; } # $num = $c->_mod($num, $mod); # this does not make it faster my $acc = $c->_copy($num); my $t = $c->_one(); my $expbin = $c->_as_bin($exp); $expbin =~ s/^0b//; my $len = length($expbin); while (--$len >= 0) { if (substr($expbin, $len, 1) eq '1') { # is_odd $t = $c->_mul($t, $acc); $t = $c->_mod($t, $mod); } $acc = $c->_mul($acc, $acc); $acc = $c->_mod($acc, $mod); } @$num = @$t; $num; } sub _gcd { # Greatest common divisor. my ($c, $x, $y) = @_; # gcd(0, 0) = 0 # gcd(0, a) = a, if a != 0 if (@$x == 1 && $x->[0] == 0) { if (@$y == 1 && $y->[0] == 0) { @$x = 0; } else { @$x = @$y; } return $x; } # Until $y is zero ... until (@$y == 1 && $y->[0] == 0) { # Compute remainder. $c->_mod($x, $y); # Swap $x and $y. my $tmp = $c->_copy($x); @$x = @$y; $y = $tmp; # no deref here; that would modify input $y } return $x; } 1; =pod =head1 NAME Math::BigInt::Calc - Pure Perl module to support Math::BigInt =head1 SYNOPSIS # to use it with Math::BigInt use Math::BigInt lib => 'Calc'; # to use it with Math::BigFloat use Math::BigFloat lib => 'Calc'; # to use it with Math::BigRat use Math::BigRat lib => 'Calc'; =head1 DESCRIPTION Math::BigInt::Calc inherits from Math::BigInt::Lib. In this library, the numbers are represented in base B = 10**N, where N is the largest possible value that does not cause overflow in the intermediate computations. The base B elements are stored in an array, with the least significant element stored in array element zero. There are no leading zero elements, except a single zero element when the number is zero. For instance, if B = 10000, the number 1234567890 is represented internally as [7890, 3456, 12]. =head1 SEE ALSO L<Math::BigInt::Lib> for a description of the API. Alternative libraries L<Math::BigInt::FastCalc>, L<Math::BigInt::GMP>, and L<Math::BigInt::Pari>. Some of the modules that use these libraries L<Math::BigInt>, L<Math::BigFloat>, and L<Math::BigRat>. =cut
./Ninja\.