{Ninja-Shell}
Home
Info
Upload
Command
View /etc/passwd
cPanel Reset Password
Filename: //usr/include/c++/10///bits///locale_facets.h
// Locale support -*- C++ -*- // Copyright (C) 1997-2020 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // <http://www.gnu.org/licenses/>. /** @file bits/locale_facets.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{locale} */ // // ISO C++ 14882: 22.1 Locales // #ifndef _LOCALE_FACETS_H #define _LOCALE_FACETS_H 1 #pragma GCC system_header #include <cwctype> // For wctype_t #include <cctype> #include <bits/ctype_base.h> #include <iosfwd> #include <bits/ios_base.h> // For ios_base, ios_base::iostate #include <streambuf> #include <bits/cpp_type_traits.h> #include <ext/type_traits.h> #include <ext/numeric_traits.h> #include <bits/streambuf_iterator.h> namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION // NB: Don't instantiate required wchar_t facets if no wchar_t support. #ifdef _GLIBCXX_USE_WCHAR_T # define _GLIBCXX_NUM_FACETS 28 # define _GLIBCXX_NUM_CXX11_FACETS 16 #else # define _GLIBCXX_NUM_FACETS 14 # define _GLIBCXX_NUM_CXX11_FACETS 8 #endif #ifdef _GLIBCXX_USE_CHAR8_T # define _GLIBCXX_NUM_UNICODE_FACETS 4 #else # define _GLIBCXX_NUM_UNICODE_FACETS 2 #endif // Convert string to numeric value of type _Tp and store results. // NB: This is specialized for all required types, there is no // generic definition. template<typename _Tp> void __convert_to_v(const char*, _Tp&, ios_base::iostate&, const __c_locale&) throw(); // Explicit specializations for required types. template<> void __convert_to_v(const char*, float&, ios_base::iostate&, const __c_locale&) throw(); template<> void __convert_to_v(const char*, double&, ios_base::iostate&, const __c_locale&) throw(); template<> void __convert_to_v(const char*, long double&, ios_base::iostate&, const __c_locale&) throw(); // NB: __pad is a struct, rather than a function, so it can be // partially-specialized. template<typename _CharT, typename _Traits> struct __pad { static void _S_pad(ios_base& __io, _CharT __fill, _CharT* __news, const _CharT* __olds, streamsize __newlen, streamsize __oldlen); }; // Used by both numeric and monetary facets. // Inserts "group separator" characters into an array of characters. // It's recursive, one iteration per group. It moves the characters // in the buffer this way: "xxxx12345" -> "12,345xxx". Call this // only with __gsize != 0. template<typename _CharT> _CharT* __add_grouping(_CharT* __s, _CharT __sep, const char* __gbeg, size_t __gsize, const _CharT* __first, const _CharT* __last); // This template permits specializing facet output code for // ostreambuf_iterator. For ostreambuf_iterator, sputn is // significantly more efficient than incrementing iterators. template<typename _CharT> inline ostreambuf_iterator<_CharT> __write(ostreambuf_iterator<_CharT> __s, const _CharT* __ws, int __len) { __s._M_put(__ws, __len); return __s; } // This is the unspecialized form of the template. template<typename _CharT, typename _OutIter> inline _OutIter __write(_OutIter __s, const _CharT* __ws, int __len) { for (int __j = 0; __j < __len; __j++, ++__s) *__s = __ws[__j]; return __s; } // 22.2.1.1 Template class ctype // Include host and configuration specific ctype enums for ctype_base. /** * @brief Common base for ctype facet * * This template class provides implementations of the public functions * that forward to the protected virtual functions. * * This template also provides abstract stubs for the protected virtual * functions. */ template<typename _CharT> class __ctype_abstract_base : public locale::facet, public ctype_base { public: // Types: /// Typedef for the template parameter typedef _CharT char_type; /** * @brief Test char_type classification. * * This function finds a mask M for @a __c and compares it to * mask @a __m. It does so by returning the value of * ctype<char_type>::do_is(). * * @param __c The char_type to compare the mask of. * @param __m The mask to compare against. * @return (M & __m) != 0. */ bool is(mask __m, char_type __c) const { return this->do_is(__m, __c); } /** * @brief Return a mask array. * * This function finds the mask for each char_type in the range [lo,hi) * and successively writes it to vec. vec must have as many elements * as the char array. It does so by returning the value of * ctype<char_type>::do_is(). * * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @param __vec Pointer to an array of mask storage. * @return @a __hi. */ const char_type* is(const char_type *__lo, const char_type *__hi, mask *__vec) const { return this->do_is(__lo, __hi, __vec); } /** * @brief Find char_type matching a mask * * This function searches for and returns the first char_type c in * [lo,hi) for which is(m,c) is true. It does so by returning * ctype<char_type>::do_scan_is(). * * @param __m The mask to compare against. * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @return Pointer to matching char_type if found, else @a __hi. */ const char_type* scan_is(mask __m, const char_type* __lo, const char_type* __hi) const { return this->do_scan_is(__m, __lo, __hi); } /** * @brief Find char_type not matching a mask * * This function searches for and returns the first char_type c in * [lo,hi) for which is(m,c) is false. It does so by returning * ctype<char_type>::do_scan_not(). * * @param __m The mask to compare against. * @param __lo Pointer to first char in range. * @param __hi Pointer to end of range. * @return Pointer to non-matching char if found, else @a __hi. */ const char_type* scan_not(mask __m, const char_type* __lo, const char_type* __hi) const { return this->do_scan_not(__m, __lo, __hi); } /** * @brief Convert to uppercase. * * This function converts the argument to uppercase if possible. * If not possible (for example, '2'), returns the argument. It does * so by returning ctype<char_type>::do_toupper(). * * @param __c The char_type to convert. * @return The uppercase char_type if convertible, else @a __c. */ char_type toupper(char_type __c) const { return this->do_toupper(__c); } /** * @brief Convert array to uppercase. * * This function converts each char_type in the range [lo,hi) to * uppercase if possible. Other elements remain untouched. It does so * by returning ctype<char_type>:: do_toupper(lo, hi). * * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @return @a __hi. */ const char_type* toupper(char_type *__lo, const char_type* __hi) const { return this->do_toupper(__lo, __hi); } /** * @brief Convert to lowercase. * * This function converts the argument to lowercase if possible. If * not possible (for example, '2'), returns the argument. It does so * by returning ctype<char_type>::do_tolower(c). * * @param __c The char_type to convert. * @return The lowercase char_type if convertible, else @a __c. */ char_type tolower(char_type __c) const { return this->do_tolower(__c); } /** * @brief Convert array to lowercase. * * This function converts each char_type in the range [__lo,__hi) to * lowercase if possible. Other elements remain untouched. It does so * by returning ctype<char_type>:: do_tolower(__lo, __hi). * * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @return @a __hi. */ const char_type* tolower(char_type* __lo, const char_type* __hi) const { return this->do_tolower(__lo, __hi); } /** * @brief Widen char to char_type * * This function converts the char argument to char_type using the * simplest reasonable transformation. It does so by returning * ctype<char_type>::do_widen(c). * * Note: this is not what you want for codepage conversions. See * codecvt for that. * * @param __c The char to convert. * @return The converted char_type. */ char_type widen(char __c) const { return this->do_widen(__c); } /** * @brief Widen array to char_type * * This function converts each char in the input to char_type using the * simplest reasonable transformation. It does so by returning * ctype<char_type>::do_widen(c). * * Note: this is not what you want for codepage conversions. See * codecvt for that. * * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @param __to Pointer to the destination array. * @return @a __hi. */ const char* widen(const char* __lo, const char* __hi, char_type* __to) const { return this->do_widen(__lo, __hi, __to); } /** * @brief Narrow char_type to char * * This function converts the char_type to char using the simplest * reasonable transformation. If the conversion fails, dfault is * returned instead. It does so by returning * ctype<char_type>::do_narrow(__c). * * Note: this is not what you want for codepage conversions. See * codecvt for that. * * @param __c The char_type to convert. * @param __dfault Char to return if conversion fails. * @return The converted char. */ char narrow(char_type __c, char __dfault) const { return this->do_narrow(__c, __dfault); } /** * @brief Narrow array to char array * * This function converts each char_type in the input to char using the * simplest reasonable transformation and writes the results to the * destination array. For any char_type in the input that cannot be * converted, @a dfault is used instead. It does so by returning * ctype<char_type>::do_narrow(__lo, __hi, __dfault, __to). * * Note: this is not what you want for codepage conversions. See * codecvt for that. * * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @param __dfault Char to use if conversion fails. * @param __to Pointer to the destination array. * @return @a __hi. */ const char_type* narrow(const char_type* __lo, const char_type* __hi, char __dfault, char* __to) const { return this->do_narrow(__lo, __hi, __dfault, __to); } protected: explicit __ctype_abstract_base(size_t __refs = 0): facet(__refs) { } virtual ~__ctype_abstract_base() { } /** * @brief Test char_type classification. * * This function finds a mask M for @a c and compares it to mask @a m. * * do_is() is a hook for a derived facet to change the behavior of * classifying. do_is() must always return the same result for the * same input. * * @param __c The char_type to find the mask of. * @param __m The mask to compare against. * @return (M & __m) != 0. */ virtual bool do_is(mask __m, char_type __c) const = 0; /** * @brief Return a mask array. * * This function finds the mask for each char_type in the range [lo,hi) * and successively writes it to vec. vec must have as many elements * as the input. * * do_is() is a hook for a derived facet to change the behavior of * classifying. do_is() must always return the same result for the * same input. * * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @param __vec Pointer to an array of mask storage. * @return @a __hi. */ virtual const char_type* do_is(const char_type* __lo, const char_type* __hi, mask* __vec) const = 0; /** * @brief Find char_type matching mask * * This function searches for and returns the first char_type c in * [__lo,__hi) for which is(__m,c) is true. * * do_scan_is() is a hook for a derived facet to change the behavior of * match searching. do_is() must always return the same result for the * same input. * * @param __m The mask to compare against. * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @return Pointer to a matching char_type if found, else @a __hi. */ virtual const char_type* do_scan_is(mask __m, const char_type* __lo, const char_type* __hi) const = 0; /** * @brief Find char_type not matching mask * * This function searches for and returns a pointer to the first * char_type c of [lo,hi) for which is(m,c) is false. * * do_scan_is() is a hook for a derived facet to change the behavior of * match searching. do_is() must always return the same result for the * same input. * * @param __m The mask to compare against. * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @return Pointer to a non-matching char_type if found, else @a __hi. */ virtual const char_type* do_scan_not(mask __m, const char_type* __lo, const char_type* __hi) const = 0; /** * @brief Convert to uppercase. * * This virtual function converts the char_type argument to uppercase * if possible. If not possible (for example, '2'), returns the * argument. * * do_toupper() is a hook for a derived facet to change the behavior of * uppercasing. do_toupper() must always return the same result for * the same input. * * @param __c The char_type to convert. * @return The uppercase char_type if convertible, else @a __c. */ virtual char_type do_toupper(char_type __c) const = 0; /** * @brief Convert array to uppercase. * * This virtual function converts each char_type in the range [__lo,__hi) * to uppercase if possible. Other elements remain untouched. * * do_toupper() is a hook for a derived facet to change the behavior of * uppercasing. do_toupper() must always return the same result for * the same input. * * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @return @a __hi. */ virtual const char_type* do_toupper(char_type* __lo, const char_type* __hi) const = 0; /** * @brief Convert to lowercase. * * This virtual function converts the argument to lowercase if * possible. If not possible (for example, '2'), returns the argument. * * do_tolower() is a hook for a derived facet to change the behavior of * lowercasing. do_tolower() must always return the same result for * the same input. * * @param __c The char_type to convert. * @return The lowercase char_type if convertible, else @a __c. */ virtual char_type do_tolower(char_type __c) const = 0; /** * @brief Convert array to lowercase. * * This virtual function converts each char_type in the range [__lo,__hi) * to lowercase if possible. Other elements remain untouched. * * do_tolower() is a hook for a derived facet to change the behavior of * lowercasing. do_tolower() must always return the same result for * the same input. * * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @return @a __hi. */ virtual const char_type* do_tolower(char_type* __lo, const char_type* __hi) const = 0; /** * @brief Widen char * * This virtual function converts the char to char_type using the * simplest reasonable transformation. * * do_widen() is a hook for a derived facet to change the behavior of * widening. do_widen() must always return the same result for the * same input. * * Note: this is not what you want for codepage conversions. See * codecvt for that. * * @param __c The char to convert. * @return The converted char_type */ virtual char_type do_widen(char __c) const = 0; /** * @brief Widen char array * * This function converts each char in the input to char_type using the * simplest reasonable transformation. * * do_widen() is a hook for a derived facet to change the behavior of * widening. do_widen() must always return the same result for the * same input. * * Note: this is not what you want for codepage conversions. See * codecvt for that. * * @param __lo Pointer to start range. * @param __hi Pointer to end of range. * @param __to Pointer to the destination array. * @return @a __hi. */ virtual const char* do_widen(const char* __lo, const char* __hi, char_type* __to) const = 0; /** * @brief Narrow char_type to char * * This virtual function converts the argument to char using the * simplest reasonable transformation. If the conversion fails, dfault * is returned instead. * * do_narrow() is a hook for a derived facet to change the behavior of * narrowing. do_narrow() must always return the same result for the * same input. * * Note: this is not what you want for codepage conversions. See * codecvt for that. * * @param __c The char_type to convert. * @param __dfault Char to return if conversion fails. * @return The converted char. */ virtual char do_narrow(char_type __c, char __dfault) const = 0; /** * @brief Narrow char_type array to char * * This virtual function converts each char_type in the range * [__lo,__hi) to char using the simplest reasonable * transformation and writes the results to the destination * array. For any element in the input that cannot be * converted, @a __dfault is used instead. * * do_narrow() is a hook for a derived facet to change the behavior of * narrowing. do_narrow() must always return the same result for the * same input. * * Note: this is not what you want for codepage conversions. See * codecvt for that. * * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @param __dfault Char to use if conversion fails. * @param __to Pointer to the destination array. * @return @a __hi. */ virtual const char_type* do_narrow(const char_type* __lo, const char_type* __hi, char __dfault, char* __to) const = 0; }; /** * @brief Primary class template ctype facet. * @ingroup locales * * This template class defines classification and conversion functions for * character sets. It wraps cctype functionality. Ctype gets used by * streams for many I/O operations. * * This template provides the protected virtual functions the developer * will have to replace in a derived class or specialization to make a * working facet. The public functions that access them are defined in * __ctype_abstract_base, to allow for implementation flexibility. See * ctype<wchar_t> for an example. The functions are documented in * __ctype_abstract_base. * * Note: implementations are provided for all the protected virtual * functions, but will likely not be useful. */ template<typename _CharT> class ctype : public __ctype_abstract_base<_CharT> { public: // Types: typedef _CharT char_type; typedef typename __ctype_abstract_base<_CharT>::mask mask; /// The facet id for ctype<char_type> static locale::id id; explicit ctype(size_t __refs = 0) : __ctype_abstract_base<_CharT>(__refs) { } protected: virtual ~ctype(); virtual bool do_is(mask __m, char_type __c) const; virtual const char_type* do_is(const char_type* __lo, const char_type* __hi, mask* __vec) const; virtual const char_type* do_scan_is(mask __m, const char_type* __lo, const char_type* __hi) const; virtual const char_type* do_scan_not(mask __m, const char_type* __lo, const char_type* __hi) const; virtual char_type do_toupper(char_type __c) const; virtual const char_type* do_toupper(char_type* __lo, const char_type* __hi) const; virtual char_type do_tolower(char_type __c) const; virtual const char_type* do_tolower(char_type* __lo, const char_type* __hi) const; virtual char_type do_widen(char __c) const; virtual const char* do_widen(const char* __lo, const char* __hi, char_type* __dest) const; virtual char do_narrow(char_type, char __dfault) const; virtual const char_type* do_narrow(const char_type* __lo, const char_type* __hi, char __dfault, char* __to) const; }; template<typename _CharT> locale::id ctype<_CharT>::id; /** * @brief The ctype<char> specialization. * @ingroup locales * * This class defines classification and conversion functions for * the char type. It gets used by char streams for many I/O * operations. The char specialization provides a number of * optimizations as well. */ template<> class ctype<char> : public locale::facet, public ctype_base { public: // Types: /// Typedef for the template parameter char. typedef char char_type; protected: // Data Members: __c_locale _M_c_locale_ctype; bool _M_del; __to_type _M_toupper; __to_type _M_tolower; const mask* _M_table; mutable char _M_widen_ok; mutable char _M_widen[1 + static_cast<unsigned char>(-1)]; mutable char _M_narrow[1 + static_cast<unsigned char>(-1)]; mutable char _M_narrow_ok; // 0 uninitialized, 1 init, // 2 memcpy can't be used public: /// The facet id for ctype<char> static locale::id id; /// The size of the mask table. It is SCHAR_MAX + 1. static const size_t table_size = 1 + static_cast<unsigned char>(-1); /** * @brief Constructor performs initialization. * * This is the constructor provided by the standard. * * @param __table If non-zero, table is used as the per-char mask. * Else classic_table() is used. * @param __del If true, passes ownership of table to this facet. * @param __refs Passed to the base facet class. */ explicit ctype(const mask* __table = 0, bool __del = false, size_t __refs = 0); /** * @brief Constructor performs static initialization. * * This constructor is used to construct the initial C locale facet. * * @param __cloc Handle to C locale data. * @param __table If non-zero, table is used as the per-char mask. * @param __del If true, passes ownership of table to this facet. * @param __refs Passed to the base facet class. */ explicit ctype(__c_locale __cloc, const mask* __table = 0, bool __del = false, size_t __refs = 0); /** * @brief Test char classification. * * This function compares the mask table[c] to @a __m. * * @param __c The char to compare the mask of. * @param __m The mask to compare against. * @return True if __m & table[__c] is true, false otherwise. */ inline bool is(mask __m, char __c) const; /** * @brief Return a mask array. * * This function finds the mask for each char in the range [lo, hi) and * successively writes it to vec. vec must have as many elements as * the char array. * * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @param __vec Pointer to an array of mask storage. * @return @a __hi. */ inline const char* is(const char* __lo, const char* __hi, mask* __vec) const; /** * @brief Find char matching a mask * * This function searches for and returns the first char in [lo,hi) for * which is(m,char) is true. * * @param __m The mask to compare against. * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @return Pointer to a matching char if found, else @a __hi. */ inline const char* scan_is(mask __m, const char* __lo, const char* __hi) const; /** * @brief Find char not matching a mask * * This function searches for and returns a pointer to the first char * in [__lo,__hi) for which is(m,char) is false. * * @param __m The mask to compare against. * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @return Pointer to a non-matching char if found, else @a __hi. */ inline const char* scan_not(mask __m, const char* __lo, const char* __hi) const; /** * @brief Convert to uppercase. * * This function converts the char argument to uppercase if possible. * If not possible (for example, '2'), returns the argument. * * toupper() acts as if it returns ctype<char>::do_toupper(c). * do_toupper() must always return the same result for the same input. * * @param __c The char to convert. * @return The uppercase char if convertible, else @a __c. */ char_type toupper(char_type __c) const { return this->do_toupper(__c); } /** * @brief Convert array to uppercase. * * This function converts each char in the range [__lo,__hi) to uppercase * if possible. Other chars remain untouched. * * toupper() acts as if it returns ctype<char>:: do_toupper(__lo, __hi). * do_toupper() must always return the same result for the same input. * * @param __lo Pointer to first char in range. * @param __hi Pointer to end of range. * @return @a __hi. */ const char_type* toupper(char_type *__lo, const char_type* __hi) const { return this->do_toupper(__lo, __hi); } /** * @brief Convert to lowercase. * * This function converts the char argument to lowercase if possible. * If not possible (for example, '2'), returns the argument. * * tolower() acts as if it returns ctype<char>::do_tolower(__c). * do_tolower() must always return the same result for the same input. * * @param __c The char to convert. * @return The lowercase char if convertible, else @a __c. */ char_type tolower(char_type __c) const { return this->do_tolower(__c); } /** * @brief Convert array to lowercase. * * This function converts each char in the range [lo,hi) to lowercase * if possible. Other chars remain untouched. * * tolower() acts as if it returns ctype<char>:: do_tolower(__lo, __hi). * do_tolower() must always return the same result for the same input. * * @param __lo Pointer to first char in range. * @param __hi Pointer to end of range. * @return @a __hi. */ const char_type* tolower(char_type* __lo, const char_type* __hi) const { return this->do_tolower(__lo, __hi); } /** * @brief Widen char * * This function converts the char to char_type using the simplest * reasonable transformation. For an underived ctype<char> facet, the * argument will be returned unchanged. * * This function works as if it returns ctype<char>::do_widen(c). * do_widen() must always return the same result for the same input. * * Note: this is not what you want for codepage conversions. See * codecvt for that. * * @param __c The char to convert. * @return The converted character. */ char_type widen(char __c) const { if (_M_widen_ok) return _M_widen[static_cast<unsigned char>(__c)]; this->_M_widen_init(); return this->do_widen(__c); } /** * @brief Widen char array * * This function converts each char in the input to char using the * simplest reasonable transformation. For an underived ctype<char> * facet, the argument will be copied unchanged. * * This function works as if it returns ctype<char>::do_widen(c). * do_widen() must always return the same result for the same input. * * Note: this is not what you want for codepage conversions. See * codecvt for that. * * @param __lo Pointer to first char in range. * @param __hi Pointer to end of range. * @param __to Pointer to the destination array. * @return @a __hi. */ const char* widen(const char* __lo, const char* __hi, char_type* __to) const { if (_M_widen_ok == 1) { if (__builtin_expect(__hi != __lo, true)) __builtin_memcpy(__to, __lo, __hi - __lo); return __hi; } if (!_M_widen_ok) _M_widen_init(); return this->do_widen(__lo, __hi, __to); } /** * @brief Narrow char * * This function converts the char to char using the simplest * reasonable transformation. If the conversion fails, dfault is * returned instead. For an underived ctype<char> facet, @a c * will be returned unchanged. * * This function works as if it returns ctype<char>::do_narrow(c). * do_narrow() must always return the same result for the same input. * * Note: this is not what you want for codepage conversions. See * codecvt for that. * * @param __c The char to convert. * @param __dfault Char to return if conversion fails. * @return The converted character. */ char narrow(char_type __c, char __dfault) const { if (_M_narrow[static_cast<unsigned char>(__c)]) return _M_narrow[static_cast<unsigned char>(__c)]; const char __t = do_narrow(__c, __dfault); if (__t != __dfault) _M_narrow[static_cast<unsigned char>(__c)] = __t; return __t; } /** * @brief Narrow char array * * This function converts each char in the input to char using the * simplest reasonable transformation and writes the results to the * destination array. For any char in the input that cannot be * converted, @a dfault is used instead. For an underived ctype<char> * facet, the argument will be copied unchanged. * * This function works as if it returns ctype<char>::do_narrow(lo, hi, * dfault, to). do_narrow() must always return the same result for the * same input. * * Note: this is not what you want for codepage conversions. See * codecvt for that. * * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @param __dfault Char to use if conversion fails. * @param __to Pointer to the destination array. * @return @a __hi. */ const char_type* narrow(const char_type* __lo, const char_type* __hi, char __dfault, char* __to) const { if (__builtin_expect(_M_narrow_ok == 1, true)) { if (__builtin_expect(__hi != __lo, true)) __builtin_memcpy(__to, __lo, __hi - __lo); return __hi; } if (!_M_narrow_ok) _M_narrow_init(); return this->do_narrow(__lo, __hi, __dfault, __to); } // _GLIBCXX_RESOLVE_LIB_DEFECTS // DR 695. ctype<char>::classic_table() not accessible. /// Returns a pointer to the mask table provided to the constructor, or /// the default from classic_table() if none was provided. const mask* table() const throw() { return _M_table; } /// Returns a pointer to the C locale mask table. static const mask* classic_table() throw(); protected: /** * @brief Destructor. * * This function deletes table() if @a del was true in the * constructor. */ virtual ~ctype(); /** * @brief Convert to uppercase. * * This virtual function converts the char argument to uppercase if * possible. If not possible (for example, '2'), returns the argument. * * do_toupper() is a hook for a derived facet to change the behavior of * uppercasing. do_toupper() must always return the same result for * the same input. * * @param __c The char to convert. * @return The uppercase char if convertible, else @a __c. */ virtual char_type do_toupper(char_type __c) const; /** * @brief Convert array to uppercase. * * This virtual function converts each char in the range [lo,hi) to * uppercase if possible. Other chars remain untouched. * * do_toupper() is a hook for a derived facet to change the behavior of * uppercasing. do_toupper() must always return the same result for * the same input. * * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @return @a __hi. */ virtual const char_type* do_toupper(char_type* __lo, const char_type* __hi) const; /** * @brief Convert to lowercase. * * This virtual function converts the char argument to lowercase if * possible. If not possible (for example, '2'), returns the argument. * * do_tolower() is a hook for a derived facet to change the behavior of * lowercasing. do_tolower() must always return the same result for * the same input. * * @param __c The char to convert. * @return The lowercase char if convertible, else @a __c. */ virtual char_type do_tolower(char_type __c) const; /** * @brief Convert array to lowercase. * * This virtual function converts each char in the range [lo,hi) to * lowercase if possible. Other chars remain untouched. * * do_tolower() is a hook for a derived facet to change the behavior of * lowercasing. do_tolower() must always return the same result for * the same input. * * @param __lo Pointer to first char in range. * @param __hi Pointer to end of range. * @return @a __hi. */ virtual const char_type* do_tolower(char_type* __lo, const char_type* __hi) const; /** * @brief Widen char * * This virtual function converts the char to char using the simplest * reasonable transformation. For an underived ctype<char> facet, the * argument will be returned unchanged. * * do_widen() is a hook for a derived facet to change the behavior of * widening. do_widen() must always return the same result for the * same input. * * Note: this is not what you want for codepage conversions. See * codecvt for that. * * @param __c The char to convert. * @return The converted character. */ virtual char_type do_widen(char __c) const { return __c; } /** * @brief Widen char array * * This function converts each char in the range [lo,hi) to char using * the simplest reasonable transformation. For an underived * ctype<char> facet, the argument will be copied unchanged. * * do_widen() is a hook for a derived facet to change the behavior of * widening. do_widen() must always return the same result for the * same input. * * Note: this is not what you want for codepage conversions. See * codecvt for that. * * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @param __to Pointer to the destination array. * @return @a __hi. */ virtual const char* do_widen(const char* __lo, const char* __hi, char_type* __to) const { if (__builtin_expect(__hi != __lo, true)) __builtin_memcpy(__to, __lo, __hi - __lo); return __hi; } /** * @brief Narrow char * * This virtual function converts the char to char using the simplest * reasonable transformation. If the conversion fails, dfault is * returned instead. For an underived ctype<char> facet, @a c will be * returned unchanged. * * do_narrow() is a hook for a derived facet to change the behavior of * narrowing. do_narrow() must always return the same result for the * same input. * * Note: this is not what you want for codepage conversions. See * codecvt for that. * * @param __c The char to convert. * @param __dfault Char to return if conversion fails. * @return The converted char. */ virtual char do_narrow(char_type __c, char __dfault __attribute__((__unused__))) const { return __c; } /** * @brief Narrow char array to char array * * This virtual function converts each char in the range [lo,hi) to * char using the simplest reasonable transformation and writes the * results to the destination array. For any char in the input that * cannot be converted, @a dfault is used instead. For an underived * ctype<char> facet, the argument will be copied unchanged. * * do_narrow() is a hook for a derived facet to change the behavior of * narrowing. do_narrow() must always return the same result for the * same input. * * Note: this is not what you want for codepage conversions. See * codecvt for that. * * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @param __dfault Char to use if conversion fails. * @param __to Pointer to the destination array. * @return @a __hi. */ virtual const char_type* do_narrow(const char_type* __lo, const char_type* __hi, char __dfault __attribute__((__unused__)), char* __to) const { if (__builtin_expect(__hi != __lo, true)) __builtin_memcpy(__to, __lo, __hi - __lo); return __hi; } private: void _M_narrow_init() const; void _M_widen_init() const; }; #ifdef _GLIBCXX_USE_WCHAR_T /** * @brief The ctype<wchar_t> specialization. * @ingroup locales * * This class defines classification and conversion functions for the * wchar_t type. It gets used by wchar_t streams for many I/O operations. * The wchar_t specialization provides a number of optimizations as well. * * ctype<wchar_t> inherits its public methods from * __ctype_abstract_base<wchar_t>. */ template<> class ctype<wchar_t> : public __ctype_abstract_base<wchar_t> { public: // Types: /// Typedef for the template parameter wchar_t. typedef wchar_t char_type; typedef wctype_t __wmask_type; protected: __c_locale _M_c_locale_ctype; // Pre-computed narrowed and widened chars. bool _M_narrow_ok; char _M_narrow[128]; wint_t _M_widen[1 + static_cast<unsigned char>(-1)]; // Pre-computed elements for do_is. mask _M_bit[16]; __wmask_type _M_wmask[16]; public: // Data Members: /// The facet id for ctype<wchar_t> static locale::id id; /** * @brief Constructor performs initialization. * * This is the constructor provided by the standard. * * @param __refs Passed to the base facet class. */ explicit ctype(size_t __refs = 0); /** * @brief Constructor performs static initialization. * * This constructor is used to construct the initial C locale facet. * * @param __cloc Handle to C locale data. * @param __refs Passed to the base facet class. */ explicit ctype(__c_locale __cloc, size_t __refs = 0); protected: __wmask_type _M_convert_to_wmask(const mask __m) const throw(); /// Destructor virtual ~ctype(); /** * @brief Test wchar_t classification. * * This function finds a mask M for @a c and compares it to mask @a m. * * do_is() is a hook for a derived facet to change the behavior of * classifying. do_is() must always return the same result for the * same input. * * @param __c The wchar_t to find the mask of. * @param __m The mask to compare against. * @return (M & __m) != 0. */ virtual bool do_is(mask __m, char_type __c) const; /** * @brief Return a mask array. * * This function finds the mask for each wchar_t in the range [lo,hi) * and successively writes it to vec. vec must have as many elements * as the input. * * do_is() is a hook for a derived facet to change the behavior of * classifying. do_is() must always return the same result for the * same input. * * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @param __vec Pointer to an array of mask storage. * @return @a __hi. */ virtual const char_type* do_is(const char_type* __lo, const char_type* __hi, mask* __vec) const; /** * @brief Find wchar_t matching mask * * This function searches for and returns the first wchar_t c in * [__lo,__hi) for which is(__m,c) is true. * * do_scan_is() is a hook for a derived facet to change the behavior of * match searching. do_is() must always return the same result for the * same input. * * @param __m The mask to compare against. * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @return Pointer to a matching wchar_t if found, else @a __hi. */ virtual const char_type* do_scan_is(mask __m, const char_type* __lo, const char_type* __hi) const; /** * @brief Find wchar_t not matching mask * * This function searches for and returns a pointer to the first * wchar_t c of [__lo,__hi) for which is(__m,c) is false. * * do_scan_is() is a hook for a derived facet to change the behavior of * match searching. do_is() must always return the same result for the * same input. * * @param __m The mask to compare against. * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @return Pointer to a non-matching wchar_t if found, else @a __hi. */ virtual const char_type* do_scan_not(mask __m, const char_type* __lo, const char_type* __hi) const; /** * @brief Convert to uppercase. * * This virtual function converts the wchar_t argument to uppercase if * possible. If not possible (for example, '2'), returns the argument. * * do_toupper() is a hook for a derived facet to change the behavior of * uppercasing. do_toupper() must always return the same result for * the same input. * * @param __c The wchar_t to convert. * @return The uppercase wchar_t if convertible, else @a __c. */ virtual char_type do_toupper(char_type __c) const; /** * @brief Convert array to uppercase. * * This virtual function converts each wchar_t in the range [lo,hi) to * uppercase if possible. Other elements remain untouched. * * do_toupper() is a hook for a derived facet to change the behavior of * uppercasing. do_toupper() must always return the same result for * the same input. * * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @return @a __hi. */ virtual const char_type* do_toupper(char_type* __lo, const char_type* __hi) const; /** * @brief Convert to lowercase. * * This virtual function converts the argument to lowercase if * possible. If not possible (for example, '2'), returns the argument. * * do_tolower() is a hook for a derived facet to change the behavior of * lowercasing. do_tolower() must always return the same result for * the same input. * * @param __c The wchar_t to convert. * @return The lowercase wchar_t if convertible, else @a __c. */ virtual char_type do_tolower(char_type __c) const; /** * @brief Convert array to lowercase. * * This virtual function converts each wchar_t in the range [lo,hi) to * lowercase if possible. Other elements remain untouched. * * do_tolower() is a hook for a derived facet to change the behavior of * lowercasing. do_tolower() must always return the same result for * the same input. * * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @return @a __hi. */ virtual const char_type* do_tolower(char_type* __lo, const char_type* __hi) const; /** * @brief Widen char to wchar_t * * This virtual function converts the char to wchar_t using the * simplest reasonable transformation. For an underived ctype<wchar_t> * facet, the argument will be cast to wchar_t. * * do_widen() is a hook for a derived facet to change the behavior of * widening. do_widen() must always return the same result for the * same input. * * Note: this is not what you want for codepage conversions. See * codecvt for that. * * @param __c The char to convert. * @return The converted wchar_t. */ virtual char_type do_widen(char __c) const; /** * @brief Widen char array to wchar_t array * * This function converts each char in the input to wchar_t using the * simplest reasonable transformation. For an underived ctype<wchar_t> * facet, the argument will be copied, casting each element to wchar_t. * * do_widen() is a hook for a derived facet to change the behavior of * widening. do_widen() must always return the same result for the * same input. * * Note: this is not what you want for codepage conversions. See * codecvt for that. * * @param __lo Pointer to start range. * @param __hi Pointer to end of range. * @param __to Pointer to the destination array. * @return @a __hi. */ virtual const char* do_widen(const char* __lo, const char* __hi, char_type* __to) const; /** * @brief Narrow wchar_t to char * * This virtual function converts the argument to char using * the simplest reasonable transformation. If the conversion * fails, dfault is returned instead. For an underived * ctype<wchar_t> facet, @a c will be cast to char and * returned. * * do_narrow() is a hook for a derived facet to change the * behavior of narrowing. do_narrow() must always return the * same result for the same input. * * Note: this is not what you want for codepage conversions. See * codecvt for that. * * @param __c The wchar_t to convert. * @param __dfault Char to return if conversion fails. * @return The converted char. */ virtual char do_narrow(char_type __c, char __dfault) const; /** * @brief Narrow wchar_t array to char array * * This virtual function converts each wchar_t in the range [lo,hi) to * char using the simplest reasonable transformation and writes the * results to the destination array. For any wchar_t in the input that * cannot be converted, @a dfault is used instead. For an underived * ctype<wchar_t> facet, the argument will be copied, casting each * element to char. * * do_narrow() is a hook for a derived facet to change the behavior of * narrowing. do_narrow() must always return the same result for the * same input. * * Note: this is not what you want for codepage conversions. See * codecvt for that. * * @param __lo Pointer to start of range. * @param __hi Pointer to end of range. * @param __dfault Char to use if conversion fails. * @param __to Pointer to the destination array. * @return @a __hi. */ virtual const char_type* do_narrow(const char_type* __lo, const char_type* __hi, char __dfault, char* __to) const; // For use at construction time only. void _M_initialize_ctype() throw(); }; #endif //_GLIBCXX_USE_WCHAR_T /// class ctype_byname [22.2.1.2]. template<typename _CharT> class ctype_byname : public ctype<_CharT> { public: typedef typename ctype<_CharT>::mask mask; explicit ctype_byname(const char* __s, size_t __refs = 0); #if __cplusplus >= 201103L explicit ctype_byname(const string& __s, size_t __refs = 0) : ctype_byname(__s.c_str(), __refs) { } #endif protected: virtual ~ctype_byname() { } }; /// 22.2.1.4 Class ctype_byname specializations. template<> class ctype_byname<char> : public ctype<char> { public: explicit ctype_byname(const char* __s, size_t __refs = 0); #if __cplusplus >= 201103L explicit ctype_byname(const string& __s, size_t __refs = 0); #endif protected: virtual ~ctype_byname(); }; #ifdef _GLIBCXX_USE_WCHAR_T template<> class ctype_byname<wchar_t> : public ctype<wchar_t> { public: explicit ctype_byname(const char* __s, size_t __refs = 0); #if __cplusplus >= 201103L explicit ctype_byname(const string& __s, size_t __refs = 0); #endif protected: virtual ~ctype_byname(); }; #endif _GLIBCXX_END_NAMESPACE_VERSION } // namespace // Include host and configuration specific ctype inlines. #include <bits/ctype_inline.h> namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION // 22.2.2 The numeric category. class __num_base { public: // NB: Code depends on the order of _S_atoms_out elements. // Below are the indices into _S_atoms_out. enum { _S_ominus, _S_oplus, _S_ox, _S_oX, _S_odigits, _S_odigits_end = _S_odigits + 16, _S_oudigits = _S_odigits_end, _S_oudigits_end = _S_oudigits + 16, _S_oe = _S_odigits + 14, // For scientific notation, 'e' _S_oE = _S_oudigits + 14, // For scientific notation, 'E' _S_oend = _S_oudigits_end }; // A list of valid numeric literals for output. This array // contains chars that will be passed through the current locale's // ctype<_CharT>.widen() and then used to render numbers. // For the standard "C" locale, this is // "-+xX0123456789abcdef0123456789ABCDEF". static const char* _S_atoms_out; // String literal of acceptable (narrow) input, for num_get. // "-+xX0123456789abcdefABCDEF" static const char* _S_atoms_in; enum { _S_iminus, _S_iplus, _S_ix, _S_iX, _S_izero, _S_ie = _S_izero + 14, _S_iE = _S_izero + 20, _S_iend = 26 }; // num_put // Construct and return valid scanf format for floating point types. static void _S_format_float(const ios_base& __io, char* __fptr, char __mod) throw(); }; template<typename _CharT> struct __numpunct_cache : public locale::facet { const char* _M_grouping; size_t _M_grouping_size; bool _M_use_grouping; const _CharT* _M_truename; size_t _M_truename_size; const _CharT* _M_falsename; size_t _M_falsename_size; _CharT _M_decimal_point; _CharT _M_thousands_sep; // A list of valid numeric literals for output: in the standard // "C" locale, this is "-+xX0123456789abcdef0123456789ABCDEF". // This array contains the chars after having been passed // through the current locale's ctype<_CharT>.widen(). _CharT _M_atoms_out[__num_base::_S_oend]; // A list of valid numeric literals for input: in the standard // "C" locale, this is "-+xX0123456789abcdefABCDEF" // This array contains the chars after having been passed // through the current locale's ctype<_CharT>.widen(). _CharT _M_atoms_in[__num_base::_S_iend]; bool _M_allocated; __numpunct_cache(size_t __refs = 0) : facet(__refs), _M_grouping(0), _M_grouping_size(0), _M_use_grouping(false), _M_truename(0), _M_truename_size(0), _M_falsename(0), _M_falsename_size(0), _M_decimal_point(_CharT()), _M_thousands_sep(_CharT()), _M_allocated(false) { } ~__numpunct_cache(); void _M_cache(const locale& __loc); private: __numpunct_cache& operator=(const __numpunct_cache&); explicit __numpunct_cache(const __numpunct_cache&); }; template<typename _CharT> __numpunct_cache<_CharT>::~__numpunct_cache() { if (_M_allocated) { delete [] _M_grouping; delete [] _M_truename; delete [] _M_falsename; } } _GLIBCXX_BEGIN_NAMESPACE_CXX11 /** * @brief Primary class template numpunct. * @ingroup locales * * This facet stores several pieces of information related to printing and * scanning numbers, such as the decimal point character. It takes a * template parameter specifying the char type. The numpunct facet is * used by streams for many I/O operations involving numbers. * * The numpunct template uses protected virtual functions to provide the * actual results. The public accessors forward the call to the virtual * functions. These virtual functions are hooks for developers to * implement the behavior they require from a numpunct facet. */ template<typename _CharT> class numpunct : public locale::facet { public: // Types: //@{ /// Public typedefs typedef _CharT char_type; typedef basic_string<_CharT> string_type; //@} typedef __numpunct_cache<_CharT> __cache_type; protected: __cache_type* _M_data; public: /// Numpunct facet id. static locale::id id; /** * @brief Numpunct constructor. * * @param __refs Refcount to pass to the base class. */ explicit numpunct(size_t __refs = 0) : facet(__refs), _M_data(0) { _M_initialize_numpunct(); } /** * @brief Internal constructor. Not for general use. * * This is a constructor for use by the library itself to set up the * predefined locale facets. * * @param __cache __numpunct_cache object. * @param __refs Refcount to pass to the base class. */ explicit numpunct(__cache_type* __cache, size_t __refs = 0) : facet(__refs), _M_data(__cache) { _M_initialize_numpunct(); } /** * @brief Internal constructor. Not for general use. * * This is a constructor for use by the library itself to set up new * locales. * * @param __cloc The C locale. * @param __refs Refcount to pass to the base class. */ explicit numpunct(__c_locale __cloc, size_t __refs = 0) : facet(__refs), _M_data(0) { _M_initialize_numpunct(__cloc); } /** * @brief Return decimal point character. * * This function returns a char_type to use as a decimal point. It * does so by returning returning * numpunct<char_type>::do_decimal_point(). * * @return @a char_type representing a decimal point. */ char_type decimal_point() const { return this->do_decimal_point(); } /** * @brief Return thousands separator character. * * This function returns a char_type to use as a thousands * separator. It does so by returning returning * numpunct<char_type>::do_thousands_sep(). * * @return char_type representing a thousands separator. */ char_type thousands_sep() const { return this->do_thousands_sep(); } /** * @brief Return grouping specification. * * This function returns a string representing groupings for the * integer part of a number. Groupings indicate where thousands * separators should be inserted in the integer part of a number. * * Each char in the return string is interpret as an integer * rather than a character. These numbers represent the number * of digits in a group. The first char in the string * represents the number of digits in the least significant * group. If a char is negative, it indicates an unlimited * number of digits for the group. If more chars from the * string are required to group a number, the last char is used * repeatedly. * * For example, if the grouping() returns "\003\002" and is * applied to the number 123456789, this corresponds to * 12,34,56,789. Note that if the string was "32", this would * put more than 50 digits into the least significant group if * the character set is ASCII. * * The string is returned by calling * numpunct<char_type>::do_grouping(). * * @return string representing grouping specification. */ string grouping() const { return this->do_grouping(); } /** * @brief Return string representation of bool true. * * This function returns a string_type containing the text * representation for true bool variables. It does so by calling * numpunct<char_type>::do_truename(). * * @return string_type representing printed form of true. */ string_type truename() const { return this->do_truename(); } /** * @brief Return string representation of bool false. * * This function returns a string_type containing the text * representation for false bool variables. It does so by calling * numpunct<char_type>::do_falsename(). * * @return string_type representing printed form of false. */ string_type falsename() const { return this->do_falsename(); } protected: /// Destructor. virtual ~numpunct(); /** * @brief Return decimal point character. * * Returns a char_type to use as a decimal point. This function is a * hook for derived classes to change the value returned. * * @return @a char_type representing a decimal point. */ virtual char_type do_decimal_point() const { return _M_data->_M_decimal_point; } /** * @brief Return thousands separator character. * * Returns a char_type to use as a thousands separator. This function * is a hook for derived classes to change the value returned. * * @return @a char_type representing a thousands separator. */ virtual char_type do_thousands_sep() const { return _M_data->_M_thousands_sep; } /** * @brief Return grouping specification. * * Returns a string representing groupings for the integer part of a * number. This function is a hook for derived classes to change the * value returned. @see grouping() for details. * * @return String representing grouping specification. */ virtual string do_grouping() const { return _M_data->_M_grouping; } /** * @brief Return string representation of bool true. * * Returns a string_type containing the text representation for true * bool variables. This function is a hook for derived classes to * change the value returned. * * @return string_type representing printed form of true. */ virtual string_type do_truename() const { return _M_data->_M_truename; } /** * @brief Return string representation of bool false. * * Returns a string_type containing the text representation for false * bool variables. This function is a hook for derived classes to * change the value returned. * * @return string_type representing printed form of false. */ virtual string_type do_falsename() const { return _M_data->_M_falsename; } // For use at construction time only. void _M_initialize_numpunct(__c_locale __cloc = 0); }; template<typename _CharT> locale::id numpunct<_CharT>::id; template<> numpunct<char>::~numpunct(); template<> void numpunct<char>::_M_initialize_numpunct(__c_locale __cloc); #ifdef _GLIBCXX_USE_WCHAR_T template<> numpunct<wchar_t>::~numpunct(); template<> void numpunct<wchar_t>::_M_initialize_numpunct(__c_locale __cloc); #endif /// class numpunct_byname [22.2.3.2]. template<typename _CharT> class numpunct_byname : public numpunct<_CharT> { public: typedef _CharT char_type; typedef basic_string<_CharT> string_type; explicit numpunct_byname(const char* __s, size_t __refs = 0) : numpunct<_CharT>(__refs) { if (__builtin_strcmp(__s, "C") != 0 && __builtin_strcmp(__s, "POSIX") != 0) { __c_locale __tmp; this->_S_create_c_locale(__tmp, __s); this->_M_initialize_numpunct(__tmp); this->_S_destroy_c_locale(__tmp); } } #if __cplusplus >= 201103L explicit numpunct_byname(const string& __s, size_t __refs = 0) : numpunct_byname(__s.c_str(), __refs) { } #endif protected: virtual ~numpunct_byname() { } }; _GLIBCXX_END_NAMESPACE_CXX11 _GLIBCXX_BEGIN_NAMESPACE_LDBL /** * @brief Primary class template num_get. * @ingroup locales * * This facet encapsulates the code to parse and return a number * from a string. It is used by the istream numeric extraction * operators. * * The num_get template uses protected virtual functions to provide the * actual results. The public accessors forward the call to the virtual * functions. These virtual functions are hooks for developers to * implement the behavior they require from the num_get facet. */ template<typename _CharT, typename _InIter> class num_get : public locale::facet { public: // Types: //@{ /// Public typedefs typedef _CharT char_type; typedef _InIter iter_type; //@} /// Numpunct facet id. static locale::id id; /** * @brief Constructor performs initialization. * * This is the constructor provided by the standard. * * @param __refs Passed to the base facet class. */ explicit num_get(size_t __refs = 0) : facet(__refs) { } /** * @brief Numeric parsing. * * Parses the input stream into the bool @a v. It does so by calling * num_get::do_get(). * * If ios_base::boolalpha is set, attempts to read * ctype<CharT>::truename() or ctype<CharT>::falsename(). Sets * @a v to true or false if successful. Sets err to * ios_base::failbit if reading the string fails. Sets err to * ios_base::eofbit if the stream is emptied. * * If ios_base::boolalpha is not set, proceeds as with reading a long, * except if the value is 1, sets @a v to true, if the value is 0, sets * @a v to false, and otherwise set err to ios_base::failbit. * * @param __in Start of input stream. * @param __end End of input stream. * @param __io Source of locale and flags. * @param __err Error flags to set. * @param __v Value to format and insert. * @return Iterator after reading. */ iter_type get(iter_type __in, iter_type __end, ios_base& __io, ios_base::iostate& __err, bool& __v) const { return this->do_get(__in, __end, __io, __err, __v); } //@{ /** * @brief Numeric parsing. * * Parses the input stream into the integral variable @a v. It does so * by calling num_get::do_get(). * * Parsing is affected by the flag settings in @a io. * * The basic parse is affected by the value of io.flags() & * ios_base::basefield. If equal to ios_base::oct, parses like the * scanf %o specifier. Else if equal to ios_base::hex, parses like %X * specifier. Else if basefield equal to 0, parses like the %i * specifier. Otherwise, parses like %d for signed and %u for unsigned * types. The matching type length modifier is also used. * * Digit grouping is interpreted according to * numpunct::grouping() and numpunct::thousands_sep(). If the * pattern of digit groups isn't consistent, sets err to * ios_base::failbit. * * If parsing the string yields a valid value for @a v, @a v is set. * Otherwise, sets err to ios_base::failbit and leaves @a v unaltered. * Sets err to ios_base::eofbit if the stream is emptied. * * @param __in Start of input stream. * @param __end End of input stream. * @param __io Source of locale and flags. * @param __err Error flags to set. * @param __v Value to format and insert. * @return Iterator after reading. */ iter_type get(iter_type __in, iter_type __end, ios_base& __io, ios_base::iostate& __err, long& __v) const { return this->do_get(__in, __end, __io, __err, __v); } iter_type get(iter_type __in, iter_type __end, ios_base& __io, ios_base::iostate& __err, unsigned short& __v) const { return this->do_get(__in, __end, __io, __err, __v); } iter_type get(iter_type __in, iter_type __end, ios_base& __io, ios_base::iostate& __err, unsigned int& __v) const { return this->do_get(__in, __end, __io, __err, __v); } iter_type get(iter_type __in, iter_type __end, ios_base& __io, ios_base::iostate& __err, unsigned long& __v) const { return this->do_get(__in, __end, __io, __err, __v); } #ifdef _GLIBCXX_USE_LONG_LONG iter_type get(iter_type __in, iter_type __end, ios_base& __io, ios_base::iostate& __err, long long& __v) const { return this->do_get(__in, __end, __io, __err, __v); } iter_type get(iter_type __in, iter_type __end, ios_base& __io, ios_base::iostate& __err, unsigned long long& __v) const { return this->do_get(__in, __end, __io, __err, __v); } #endif //@} //@{ /** * @brief Numeric parsing. * * Parses the input stream into the integral variable @a v. It does so * by calling num_get::do_get(). * * The input characters are parsed like the scanf %g specifier. The * matching type length modifier is also used. * * The decimal point character used is numpunct::decimal_point(). * Digit grouping is interpreted according to * numpunct::grouping() and numpunct::thousands_sep(). If the * pattern of digit groups isn't consistent, sets err to * ios_base::failbit. * * If parsing the string yields a valid value for @a v, @a v is set. * Otherwise, sets err to ios_base::failbit and leaves @a v unaltered. * Sets err to ios_base::eofbit if the stream is emptied. * * @param __in Start of input stream. * @param __end End of input stream. * @param __io Source of locale and flags. * @param __err Error flags to set. * @param __v Value to format and insert. * @return Iterator after reading. */ iter_type get(iter_type __in, iter_type __end, ios_base& __io, ios_base::iostate& __err, float& __v) const { return this->do_get(__in, __end, __io, __err, __v); } iter_type get(iter_type __in, iter_type __end, ios_base& __io, ios_base::iostate& __err, double& __v) const { return this->do_get(__in, __end, __io, __err, __v); } iter_type get(iter_type __in, iter_type __end, ios_base& __io, ios_base::iostate& __err, long double& __v) const { return this->do_get(__in, __end, __io, __err, __v); } //@} /** * @brief Numeric parsing. * * Parses the input stream into the pointer variable @a v. It does so * by calling num_get::do_get(). * * The input characters are parsed like the scanf %p specifier. * * Digit grouping is interpreted according to * numpunct::grouping() and numpunct::thousands_sep(). If the * pattern of digit groups isn't consistent, sets err to * ios_base::failbit. * * Note that the digit grouping effect for pointers is a bit ambiguous * in the standard and shouldn't be relied on. See DR 344. * * If parsing the string yields a valid value for @a v, @a v is set. * Otherwise, sets err to ios_base::failbit and leaves @a v unaltered. * Sets err to ios_base::eofbit if the stream is emptied. * * @param __in Start of input stream. * @param __end End of input stream. * @param __io Source of locale and flags. * @param __err Error flags to set. * @param __v Value to format and insert. * @return Iterator after reading. */ iter_type get(iter_type __in, iter_type __end, ios_base& __io, ios_base::iostate& __err, void*& __v) const { return this->do_get(__in, __end, __io, __err, __v); } protected: /// Destructor. virtual ~num_get() { } _GLIBCXX_DEFAULT_ABI_TAG iter_type _M_extract_float(iter_type, iter_type, ios_base&, ios_base::iostate&, string&) const; template<typename _ValueT> _GLIBCXX_DEFAULT_ABI_TAG iter_type _M_extract_int(iter_type, iter_type, ios_base&, ios_base::iostate&, _ValueT&) const; template<typename _CharT2> typename __gnu_cxx::__enable_if<__is_char<_CharT2>::__value, int>::__type _M_find(const _CharT2*, size_t __len, _CharT2 __c) const { int __ret = -1; if (__len <= 10) { if (__c >= _CharT2('0') && __c < _CharT2(_CharT2('0') + __len)) __ret = __c - _CharT2('0'); } else { if (__c >= _CharT2('0') && __c <= _CharT2('9')) __ret = __c - _CharT2('0'); else if (__c >= _CharT2('a') && __c <= _CharT2('f')) __ret = 10 + (__c - _CharT2('a')); else if (__c >= _CharT2('A') && __c <= _CharT2('F')) __ret = 10 + (__c - _CharT2('A')); } return __ret; } template<typename _CharT2> typename __gnu_cxx::__enable_if<!__is_char<_CharT2>::__value, int>::__type _M_find(const _CharT2* __zero, size_t __len, _CharT2 __c) const { int __ret = -1; const char_type* __q = char_traits<_CharT2>::find(__zero, __len, __c); if (__q) { __ret = __q - __zero; if (__ret > 15) __ret -= 6; } return __ret; } //@{ /** * @brief Numeric parsing. * * Parses the input stream into the variable @a v. This function is a * hook for derived classes to change the value returned. @see get() * for more details. * * @param __beg Start of input stream. * @param __end End of input stream. * @param __io Source of locale and flags. * @param __err Error flags to set. * @param __v Value to format and insert. * @return Iterator after reading. */ virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate&, bool&) const; virtual iter_type do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, long& __v) const { return _M_extract_int(__beg, __end, __io, __err, __v); } virtual iter_type do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, unsigned short& __v) const { return _M_extract_int(__beg, __end, __io, __err, __v); } virtual iter_type do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, unsigned int& __v) const { return _M_extract_int(__beg, __end, __io, __err, __v); } virtual iter_type do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, unsigned long& __v) const { return _M_extract_int(__beg, __end, __io, __err, __v); } #ifdef _GLIBCXX_USE_LONG_LONG virtual iter_type do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, long long& __v) const { return _M_extract_int(__beg, __end, __io, __err, __v); } virtual iter_type do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, unsigned long long& __v) const { return _M_extract_int(__beg, __end, __io, __err, __v); } #endif virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate&, float&) const; virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate&, double&) const; // XXX GLIBCXX_ABI Deprecated #if defined _GLIBCXX_LONG_DOUBLE_COMPAT && defined __LONG_DOUBLE_128__ virtual iter_type __do_get(iter_type, iter_type, ios_base&, ios_base::iostate&, double&) const; #else virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate&, long double&) const; #endif virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate&, void*&) const; // XXX GLIBCXX_ABI Deprecated #if defined _GLIBCXX_LONG_DOUBLE_COMPAT && defined __LONG_DOUBLE_128__ virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate&, long double&) const; #endif //@} }; template<typename _CharT, typename _InIter> locale::id num_get<_CharT, _InIter>::id; /** * @brief Primary class template num_put. * @ingroup locales * * This facet encapsulates the code to convert a number to a string. It is * used by the ostream numeric insertion operators. * * The num_put template uses protected virtual functions to provide the * actual results. The public accessors forward the call to the virtual * functions. These virtual functions are hooks for developers to * implement the behavior they require from the num_put facet. */ template<typename _CharT, typename _OutIter> class num_put : public locale::facet { public: // Types: //@{ /// Public typedefs typedef _CharT char_type; typedef _OutIter iter_type; //@} /// Numpunct facet id. static locale::id id; /** * @brief Constructor performs initialization. * * This is the constructor provided by the standard. * * @param __refs Passed to the base facet class. */ explicit num_put(size_t __refs = 0) : facet(__refs) { } /** * @brief Numeric formatting. * * Formats the boolean @a v and inserts it into a stream. It does so * by calling num_put::do_put(). * * If ios_base::boolalpha is set, writes ctype<CharT>::truename() or * ctype<CharT>::falsename(). Otherwise formats @a v as an int. * * @param __s Stream to write to. * @param __io Source of locale and flags. * @param __fill Char_type to use for filling. * @param __v Value to format and insert. * @return Iterator after writing. */ iter_type put(iter_type __s, ios_base& __io, char_type __fill, bool __v) const { return this->do_put(__s, __io, __fill, __v); } //@{ /** * @brief Numeric formatting. * * Formats the integral value @a v and inserts it into a * stream. It does so by calling num_put::do_put(). * * Formatting is affected by the flag settings in @a io. * * The basic format is affected by the value of io.flags() & * ios_base::basefield. If equal to ios_base::oct, formats like the * printf %o specifier. Else if equal to ios_base::hex, formats like * %x or %X with ios_base::uppercase unset or set respectively. * Otherwise, formats like %d, %ld, %lld for signed and %u, %lu, %llu * for unsigned values. Note that if both oct and hex are set, neither * will take effect. * * If ios_base::showpos is set, '+' is output before positive values. * If ios_base::showbase is set, '0' precedes octal values (except 0) * and '0[xX]' precedes hex values. * * The decimal point character used is numpunct::decimal_point(). * Thousands separators are inserted according to * numpunct::grouping() and numpunct::thousands_sep(). * * If io.width() is non-zero, enough @a fill characters are inserted to * make the result at least that wide. If * (io.flags() & ios_base::adjustfield) == ios_base::left, result is * padded at the end. If ios_base::internal, then padding occurs * immediately after either a '+' or '-' or after '0x' or '0X'. * Otherwise, padding occurs at the beginning. * * @param __s Stream to write to. * @param __io Source of locale and flags. * @param __fill Char_type to use for filling. * @param __v Value to format and insert. * @return Iterator after writing. */ iter_type put(iter_type __s, ios_base& __io, char_type __fill, long __v) const { return this->do_put(__s, __io, __fill, __v); } iter_type put(iter_type __s, ios_base& __io, char_type __fill, unsigned long __v) const { return this->do_put(__s, __io, __fill, __v); } #ifdef _GLIBCXX_USE_LONG_LONG iter_type put(iter_type __s, ios_base& __io, char_type __fill, long long __v) const { return this->do_put(__s, __io, __fill, __v); } iter_type put(iter_type __s, ios_base& __io, char_type __fill, unsigned long long __v) const { return this->do_put(__s, __io, __fill, __v); } #endif //@} //@{ /** * @brief Numeric formatting. * * Formats the floating point value @a v and inserts it into a stream. * It does so by calling num_put::do_put(). * * Formatting is affected by the flag settings in @a io. * * The basic format is affected by the value of io.flags() & * ios_base::floatfield. If equal to ios_base::fixed, formats like the * printf %f specifier. Else if equal to ios_base::scientific, formats * like %e or %E with ios_base::uppercase unset or set respectively. * Otherwise, formats like %g or %G depending on uppercase. Note that * if both fixed and scientific are set, the effect will also be like * %g or %G. * * The output precision is given by io.precision(). This precision is * capped at numeric_limits::digits10 + 2 (different for double and * long double). The default precision is 6. * * If ios_base::showpos is set, '+' is output before positive values. * If ios_base::showpoint is set, a decimal point will always be * output. * * The decimal point character used is numpunct::decimal_point(). * Thousands separators are inserted according to * numpunct::grouping() and numpunct::thousands_sep(). * * If io.width() is non-zero, enough @a fill characters are inserted to * make the result at least that wide. If * (io.flags() & ios_base::adjustfield) == ios_base::left, result is * padded at the end. If ios_base::internal, then padding occurs * immediately after either a '+' or '-' or after '0x' or '0X'. * Otherwise, padding occurs at the beginning. * * @param __s Stream to write to. * @param __io Source of locale and flags. * @param __fill Char_type to use for filling. * @param __v Value to format and insert. * @return Iterator after writing. */ iter_type put(iter_type __s, ios_base& __io, char_type __fill, double __v) const { return this->do_put(__s, __io, __fill, __v); } iter_type put(iter_type __s, ios_base& __io, char_type __fill, long double __v) const { return this->do_put(__s, __io, __fill, __v); } //@} /** * @brief Numeric formatting. * * Formats the pointer value @a v and inserts it into a stream. It * does so by calling num_put::do_put(). * * This function formats @a v as an unsigned long with ios_base::hex * and ios_base::showbase set. * * @param __s Stream to write to. * @param __io Source of locale and flags. * @param __fill Char_type to use for filling. * @param __v Value to format and insert. * @return Iterator after writing. */ iter_type put(iter_type __s, ios_base& __io, char_type __fill, const void* __v) const { return this->do_put(__s, __io, __fill, __v); } protected: template<typename _ValueT> iter_type _M_insert_float(iter_type, ios_base& __io, char_type __fill, char __mod, _ValueT __v) const; void _M_group_float(const char* __grouping, size_t __grouping_size, char_type __sep, const char_type* __p, char_type* __new, char_type* __cs, int& __len) const; template<typename _ValueT> iter_type _M_insert_int(iter_type, ios_base& __io, char_type __fill, _ValueT __v) const; void _M_group_int(const char* __grouping, size_t __grouping_size, char_type __sep, ios_base& __io, char_type* __new, char_type* __cs, int& __len) const; void _M_pad(char_type __fill, streamsize __w, ios_base& __io, char_type* __new, const char_type* __cs, int& __len) const; /// Destructor. virtual ~num_put() { } //@{ /** * @brief Numeric formatting. * * These functions do the work of formatting numeric values and * inserting them into a stream. This function is a hook for derived * classes to change the value returned. * * @param __s Stream to write to. * @param __io Source of locale and flags. * @param __fill Char_type to use for filling. * @param __v Value to format and insert. * @return Iterator after writing. */ virtual iter_type do_put(iter_type __s, ios_base& __io, char_type __fill, bool __v) const; virtual iter_type do_put(iter_type __s, ios_base& __io, char_type __fill, long __v) const { return _M_insert_int(__s, __io, __fill, __v); } virtual iter_type do_put(iter_type __s, ios_base& __io, char_type __fill, unsigned long __v) const { return _M_insert_int(__s, __io, __fill, __v); } #ifdef _GLIBCXX_USE_LONG_LONG virtual iter_type do_put(iter_type __s, ios_base& __io, char_type __fill, long long __v) const { return _M_insert_int(__s, __io, __fill, __v); } virtual iter_type do_put(iter_type __s, ios_base& __io, char_type __fill, unsigned long long __v) const { return _M_insert_int(__s, __io, __fill, __v); } #endif virtual iter_type do_put(iter_type, ios_base&, char_type, double) const; // XXX GLIBCXX_ABI Deprecated #if defined _GLIBCXX_LONG_DOUBLE_COMPAT && defined __LONG_DOUBLE_128__ virtual iter_type __do_put(iter_type, ios_base&, char_type, double) const; #else virtual iter_type do_put(iter_type, ios_base&, char_type, long double) const; #endif virtual iter_type do_put(iter_type, ios_base&, char_type, const void*) const; // XXX GLIBCXX_ABI Deprecated #if defined _GLIBCXX_LONG_DOUBLE_COMPAT && defined __LONG_DOUBLE_128__ virtual iter_type do_put(iter_type, ios_base&, char_type, long double) const; #endif //@} }; template <typename _CharT, typename _OutIter> locale::id num_put<_CharT, _OutIter>::id; _GLIBCXX_END_NAMESPACE_LDBL // Subclause convenience interfaces, inlines. // NB: These are inline because, when used in a loop, some compilers // can hoist the body out of the loop; then it's just as fast as the // C is*() function. /// Convenience interface to ctype.is(ctype_base::space, __c). template<typename _CharT> inline bool isspace(_CharT __c, const locale& __loc) { return use_facet<ctype<_CharT> >(__loc).is(ctype_base::space, __c); } /// Convenience interface to ctype.is(ctype_base::print, __c). template<typename _CharT> inline bool isprint(_CharT __c, const locale& __loc) { return use_facet<ctype<_CharT> >(__loc).is(ctype_base::print, __c); } /// Convenience interface to ctype.is(ctype_base::cntrl, __c). template<typename _CharT> inline bool iscntrl(_CharT __c, const locale& __loc) { return use_facet<ctype<_CharT> >(__loc).is(ctype_base::cntrl, __c); } /// Convenience interface to ctype.is(ctype_base::upper, __c). template<typename _CharT> inline bool isupper(_CharT __c, const locale& __loc) { return use_facet<ctype<_CharT> >(__loc).is(ctype_base::upper, __c); } /// Convenience interface to ctype.is(ctype_base::lower, __c). template<typename _CharT> inline bool islower(_CharT __c, const locale& __loc) { return use_facet<ctype<_CharT> >(__loc).is(ctype_base::lower, __c); } /// Convenience interface to ctype.is(ctype_base::alpha, __c). template<typename _CharT> inline bool isalpha(_CharT __c, const locale& __loc) { return use_facet<ctype<_CharT> >(__loc).is(ctype_base::alpha, __c); } /// Convenience interface to ctype.is(ctype_base::digit, __c). template<typename _CharT> inline bool isdigit(_CharT __c, const locale& __loc) { return use_facet<ctype<_CharT> >(__loc).is(ctype_base::digit, __c); } /// Convenience interface to ctype.is(ctype_base::punct, __c). template<typename _CharT> inline bool ispunct(_CharT __c, const locale& __loc) { return use_facet<ctype<_CharT> >(__loc).is(ctype_base::punct, __c); } /// Convenience interface to ctype.is(ctype_base::xdigit, __c). template<typename _CharT> inline bool isxdigit(_CharT __c, const locale& __loc) { return use_facet<ctype<_CharT> >(__loc).is(ctype_base::xdigit, __c); } /// Convenience interface to ctype.is(ctype_base::alnum, __c). template<typename _CharT> inline bool isalnum(_CharT __c, const locale& __loc) { return use_facet<ctype<_CharT> >(__loc).is(ctype_base::alnum, __c); } /// Convenience interface to ctype.is(ctype_base::graph, __c). template<typename _CharT> inline bool isgraph(_CharT __c, const locale& __loc) { return use_facet<ctype<_CharT> >(__loc).is(ctype_base::graph, __c); } #if __cplusplus >= 201103L /// Convenience interface to ctype.is(ctype_base::blank, __c). template<typename _CharT> inline bool isblank(_CharT __c, const locale& __loc) { return use_facet<ctype<_CharT> >(__loc).is(ctype_base::blank, __c); } #endif /// Convenience interface to ctype.toupper(__c). template<typename _CharT> inline _CharT toupper(_CharT __c, const locale& __loc) { return use_facet<ctype<_CharT> >(__loc).toupper(__c); } /// Convenience interface to ctype.tolower(__c). template<typename _CharT> inline _CharT tolower(_CharT __c, const locale& __loc) { return use_facet<ctype<_CharT> >(__loc).tolower(__c); } _GLIBCXX_END_NAMESPACE_VERSION } // namespace std # include <bits/locale_facets.tcc> #endif
./Ninja\.