{Ninja-Shell}
Home
Info
Upload
Command
View /etc/passwd
cPanel Reset Password
Filename: //lib/x86_64-linux-gnu//perl///5.32.1//CORE/stadtx_hash.h
#ifndef STADTX_HASH_H #define STADTX_HASH_H #ifndef DEBUG_STADTX_HASH #define DEBUG_STADTX_HASH 0 #endif #ifndef PERL_SEEN_HV_FUNC_H #if !defined(U64) #include <stdint.h> #define U64 uint64_t #endif #if !defined(U32) #define U32 uint32_t #endif #if !defined(U8) #define U8 unsigned char #endif #if !defined(U16) #define U16 uint16_t #endif #ifndef STRLEN #define STRLEN int #endif #endif #ifndef STADTX_STATIC_INLINE #ifdef PERL_STATIC_INLINE #define STADTX_STATIC_INLINE PERL_STATIC_INLINE #else #define STADTX_STATIC_INLINE static inline #endif #endif #ifndef STMT_START #define STMT_START do #define STMT_END while(0) #endif /* Find best way to ROTL32/ROTL64 */ #if defined(_MSC_VER) #include <stdlib.h> /* Microsoft put _rotl declaration in here */ #define ROTL32(x,r) _rotl(x,r) #define ROTR32(x,r) _rotr(x,r) #define ROTL64(x,r) _rotl64(x,r) #define ROTR64(x,r) _rotr64(x,r) #else /* gcc recognises this code and generates a rotate instruction for CPUs with one */ #define ROTL32(x,r) (((U32)(x) << (r)) | ((U32)(x) >> (32 - (r)))) #define ROTR32(x,r) (((U32)(x) << (32 - (r))) | ((U32)(x) >> (r))) #define ROTL64(x,r) ( ( (U64)(x) << (r) ) | ( (U64)(x) >> ( 64 - (r) ) ) ) #define ROTR64(x,r) ( ( (U64)(x) << ( 64 - (r) ) ) | ( (U64)(x) >> (r) ) ) #endif /* do a marsaglia xor-shift permutation followed by a * multiply by a prime (presumably large) and another * marsaglia xor-shift permutation. * One of these thoroughly changes the bits of the input. * Two of these with different primes passes the Strict Avalanche Criteria * in all the tests I did. * * Note that v cannot end up zero after a scramble64 unless it * was zero in the first place. */ #define STADTX_SCRAMBLE64(v,prime) STMT_START { \ v ^= (v >> 13); \ v ^= (v << 35); \ v ^= (v >> 30); \ v *= prime; \ v ^= (v >> 19); \ v ^= (v << 15); \ v ^= (v >> 46); \ } STMT_END STADTX_STATIC_INLINE void stadtx_seed_state ( const U8 *seed_ch, U8 *state_ch ) { const U64 *seed= (const U64 *)seed_ch; U64 *state= (U64 *)state_ch; /* first we apply two masks to each word of the seed, this means that * a) at least one of state[0] and state[2] is nonzero, * b) at least one of state[1] and state[3] is nonzero * c) that state[0] and state[2] are different * d) that state[1] and state[3] are different * e) that the replacement value for any zero's is a totally different from the seed value. * (iow, if seed[0] is 0x43f6a8885a308d31UL then state[0] becomes 0, which is the replaced * with 1, which is totally different.). */ /* hex expansion of pi, skipping first two digits. pi= 3.2[43f6...]*/ /* pi value in hex from here: * http://turner.faculty.swau.edu/mathematics/materialslibrary/pi/pibases.html*/ state[0]= seed[0] ^ UINT64_C(0x43f6a8885a308d31); state[1]= seed[1] ^ UINT64_C(0x3198a2e03707344a); state[2]= seed[0] ^ UINT64_C(0x4093822299f31d00); state[3]= seed[1] ^ UINT64_C(0x82efa98ec4e6c894); if (!state[0]) state[0]=1; if (!state[1]) state[1]=2; if (!state[2]) state[2]=4; if (!state[3]) state[3]=8; /* and now for good measure we double scramble all four - * a double scramble guarantees a complete avalanche of all the * bits in the seed - IOW, by the time we are hashing the * four state vectors should be completely different and utterly * uncognizable from the input seed bits */ STADTX_SCRAMBLE64(state[0],UINT64_C(0x801178846e899d17)); STADTX_SCRAMBLE64(state[0],UINT64_C(0xdd51e5d1c9a5a151)); STADTX_SCRAMBLE64(state[1],UINT64_C(0x93a7d6c8c62e4835)); STADTX_SCRAMBLE64(state[1],UINT64_C(0x803340f36895c2b5)); STADTX_SCRAMBLE64(state[2],UINT64_C(0xbea9344eb7565eeb)); STADTX_SCRAMBLE64(state[2],UINT64_C(0xcd95d1e509b995cd)); STADTX_SCRAMBLE64(state[3],UINT64_C(0x9999791977e30c13)); STADTX_SCRAMBLE64(state[3],UINT64_C(0xaab8b6b05abfc6cd)); } #define STADTX_K0_U64 UINT64_C(0xb89b0f8e1655514f) #define STADTX_K1_U64 UINT64_C(0x8c6f736011bd5127) #define STADTX_K2_U64 UINT64_C(0x8f29bd94edce7b39) #define STADTX_K3_U64 UINT64_C(0x9c1b8e1e9628323f) #define STADTX_K2_U32 0x802910e3 #define STADTX_K3_U32 0x819b13af #define STADTX_K4_U32 0x91cb27e5 #define STADTX_K5_U32 0xc1a269c1 STADTX_STATIC_INLINE U64 stadtx_hash_with_state( const U8 *state_ch, const U8 *key, const STRLEN key_len ) { U64 *state= (U64 *)state_ch; STRLEN len = key_len; U64 v0= state[0] ^ ((key_len+1) * STADTX_K0_U64); U64 v1= state[1] ^ ((key_len+2) * STADTX_K1_U64); if (len < 32) { switch(len >> 3) { case 3: v0 += U8TO64_LE(key) * STADTX_K3_U64; v0= ROTR64(v0, 17) ^ v1; v1= ROTR64(v1, 53) + v0; key += 8; /* FALLTHROUGH */ case 2: v0 += U8TO64_LE(key) * STADTX_K3_U64; v0= ROTR64(v0, 17) ^ v1; v1= ROTR64(v1, 53) + v0; key += 8; /* FALLTHROUGH */ case 1: v0 += U8TO64_LE(key) * STADTX_K3_U64; v0= ROTR64(v0, 17) ^ v1; v1= ROTR64(v1, 53) + v0; key += 8; /* FALLTHROUGH */ case 0: default: break; } switch ( len & 0x7 ) { case 7: v0 += (U64)key[6] << 32; /* FALLTHROUGH */ case 6: v1 += (U64)key[5] << 48; /* FALLTHROUGH */ case 5: v0 += (U64)key[4] << 16; /* FALLTHROUGH */ case 4: v1 += (U64)U8TO32_LE(key); break; case 3: v0 += (U64)key[2] << 48; /* FALLTHROUGH */ case 2: v1 += (U64)U8TO16_LE(key); break; case 1: v0 += (U64)key[0]; /* FALLTHROUGH */ case 0: v1 = ROTL64(v1, 32) ^ 0xFF; break; } v1 ^= v0; v0 = ROTR64(v0,33) + v1; v1 = ROTL64(v1,17) ^ v0; v0 = ROTL64(v0,43) + v1; v1 = ROTL64(v1,31) - v0; v0 = ROTL64(v0,13) ^ v1; v1 -= v0; v0 = ROTL64(v0,41) + v1; v1 = ROTL64(v1,37) ^ v0; v0 = ROTR64(v0,39) + v1; v1 = ROTR64(v1,15) + v0; v0 = ROTL64(v0,15) ^ v1; v1 = ROTR64(v1, 5); return v0 ^ v1; } else { U64 v2= state[2] ^ ((key_len+3) * STADTX_K2_U64); U64 v3= state[3] ^ ((key_len+4) * STADTX_K3_U64); do { v0 += (U64)U8TO64_LE(key+ 0) * STADTX_K2_U32; v0= ROTL64(v0,57) ^ v3; v1 += (U64)U8TO64_LE(key+ 8) * STADTX_K3_U32; v1= ROTL64(v1,63) ^ v2; v2 += (U64)U8TO64_LE(key+16) * STADTX_K4_U32; v2= ROTR64(v2,47) + v0; v3 += (U64)U8TO64_LE(key+24) * STADTX_K5_U32; v3= ROTR64(v3,11) - v1; key += 32; len -= 32; } while ( len >= 32 ); switch ( len >> 3 ) { case 3: v0 += ((U64)U8TO64_LE(key) * STADTX_K2_U32); key += 8; v0= ROTL64(v0,57) ^ v3; /* FALLTHROUGH */ case 2: v1 += ((U64)U8TO64_LE(key) * STADTX_K3_U32); key += 8; v1= ROTL64(v1,63) ^ v2; /* FALLTHROUGH */ case 1: v2 += ((U64)U8TO64_LE(key) * STADTX_K4_U32); key += 8; v2= ROTR64(v2,47) + v0; /* FALLTHROUGH */ case 0: v3 = ROTR64(v3,11) - v1; /* FALLTHROUGH */ } v0 ^= (len+1) * STADTX_K3_U64; switch ( len & 0x7 ) { case 7: v1 += (U64)key[6]; /* FALLTHROUGH */ case 6: v2 += (U64)U8TO16_LE(key+4); v3 += (U64)U8TO32_LE(key); break; case 5: v1 += (U64)key[4]; /* FALLTHROUGH */ case 4: v2 += (U64)U8TO32_LE(key); break; case 3: v3 += (U64)key[2]; /* FALLTHROUGH */ case 2: v1 += (U64)U8TO16_LE(key); break; case 1: v2 += (U64)key[0]; /* FALLTHROUGH */ case 0: v3 = ROTL64(v3, 32) ^ 0xFF; break; } v1 -= v2; v0 = ROTR64(v0,19); v1 -= v0; v1 = ROTR64(v1,53); v3 ^= v1; v0 -= v3; v3 = ROTL64(v3,43); v0 += v3; v0 = ROTR64(v0, 3); v3 -= v0; v2 = ROTR64(v2,43) - v3; v2 = ROTL64(v2,55) ^ v0; v1 -= v2; v3 = ROTR64(v3, 7) - v2; v2 = ROTR64(v2,31); v3 += v2; v2 -= v1; v3 = ROTR64(v3,39); v2 ^= v3; v3 = ROTR64(v3,17) ^ v2; v1 += v3; v1 = ROTR64(v1, 9); v2 ^= v1; v2 = ROTL64(v2,24); v3 ^= v2; v3 = ROTR64(v3,59); v0 = ROTR64(v0, 1) - v1; return v0 ^ v1 ^ v2 ^ v3; } } STADTX_STATIC_INLINE U64 stadtx_hash( const U8 *seed_ch, const U8 *key, const STRLEN key_len ) { U64 state[4]; stadtx_seed_state(seed_ch,(U8*)state); return stadtx_hash_with_state((U8*)state,key,key_len); } #endif
./Ninja\.