// Set implementation -*- C++ -*- // Copyright (C) 2001-2020 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // <http://www.gnu.org/licenses/>. /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996,1997 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file bits/stl_set.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{set} */ #ifndef _STL_SET_H #define _STL_SET_H 1 #include <bits/concept_check.h> #if __cplusplus >= 201103L #include <initializer_list> #endif namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION _GLIBCXX_BEGIN_NAMESPACE_CONTAINER template<typename _Key, typename _Compare, typename _Alloc> class multiset; /** * @brief A standard container made up of unique keys, which can be * retrieved in logarithmic time. * * @ingroup associative_containers * * @tparam _Key Type of key objects. * @tparam _Compare Comparison function object type, defaults to less<_Key>. * @tparam _Alloc Allocator type, defaults to allocator<_Key>. * * Meets the requirements of a <a href="tables.html#65">container</a>, a * <a href="tables.html#66">reversible container</a>, and an * <a href="tables.html#69">associative container</a> (using unique keys). * * Sets support bidirectional iterators. * * The private tree data is declared exactly the same way for set and * multiset; the distinction is made entirely in how the tree functions are * called (*_unique versus *_equal, same as the standard). */ template<typename _Key, typename _Compare = std::less<_Key>, typename _Alloc = std::allocator<_Key> > class set { #ifdef _GLIBCXX_CONCEPT_CHECKS // concept requirements typedef typename _Alloc::value_type _Alloc_value_type; # if __cplusplus < 201103L __glibcxx_class_requires(_Key, _SGIAssignableConcept) # endif __glibcxx_class_requires4(_Compare, bool, _Key, _Key, _BinaryFunctionConcept) __glibcxx_class_requires2(_Key, _Alloc_value_type, _SameTypeConcept) #endif #if __cplusplus >= 201103L static_assert(is_same<typename remove_cv<_Key>::type, _Key>::value, "std::set must have a non-const, non-volatile value_type"); # if __cplusplus > 201703L || defined __STRICT_ANSI__ static_assert(is_same<typename _Alloc::value_type, _Key>::value, "std::set must have the same value_type as its allocator"); # endif #endif public: // typedefs: //@{ /// Public typedefs. typedef _Key key_type; typedef _Key value_type; typedef _Compare key_compare; typedef _Compare value_compare; typedef _Alloc allocator_type; //@} private: typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template rebind<_Key>::other _Key_alloc_type; typedef _Rb_tree<key_type, value_type, _Identity<value_type>, key_compare, _Key_alloc_type> _Rep_type; _Rep_type _M_t; // Red-black tree representing set. typedef __gnu_cxx::__alloc_traits<_Key_alloc_type> _Alloc_traits; public: //@{ /// Iterator-related typedefs. typedef typename _Alloc_traits::pointer pointer; typedef typename _Alloc_traits::const_pointer const_pointer; typedef typename _Alloc_traits::reference reference; typedef typename _Alloc_traits::const_reference const_reference; // _GLIBCXX_RESOLVE_LIB_DEFECTS // DR 103. set::iterator is required to be modifiable, // but this allows modification of keys. typedef typename _Rep_type::const_iterator iterator; typedef typename _Rep_type::const_iterator const_iterator; typedef typename _Rep_type::const_reverse_iterator reverse_iterator; typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; typedef typename _Rep_type::size_type size_type; typedef typename _Rep_type::difference_type difference_type; //@} #if __cplusplus > 201402L using node_type = typename _Rep_type::node_type; using insert_return_type = typename _Rep_type::insert_return_type; #endif // allocation/deallocation /** * @brief Default constructor creates no elements. */ #if __cplusplus < 201103L set() : _M_t() { } #else set() = default; #endif /** * @brief Creates a %set with no elements. * @param __comp Comparator to use. * @param __a An allocator object. */ explicit set(const _Compare& __comp, const allocator_type& __a = allocator_type()) : _M_t(__comp, _Key_alloc_type(__a)) { } /** * @brief Builds a %set from a range. * @param __first An input iterator. * @param __last An input iterator. * * Create a %set consisting of copies of the elements from * [__first,__last). This is linear in N if the range is * already sorted, and NlogN otherwise (where N is * distance(__first,__last)). */ template<typename _InputIterator> set(_InputIterator __first, _InputIterator __last) : _M_t() { _M_t._M_insert_range_unique(__first, __last); } /** * @brief Builds a %set from a range. * @param __first An input iterator. * @param __last An input iterator. * @param __comp A comparison functor. * @param __a An allocator object. * * Create a %set consisting of copies of the elements from * [__first,__last). This is linear in N if the range is * already sorted, and NlogN otherwise (where N is * distance(__first,__last)). */ template<typename _InputIterator> set(_InputIterator __first, _InputIterator __last, const _Compare& __comp, const allocator_type& __a = allocator_type()) : _M_t(__comp, _Key_alloc_type(__a)) { _M_t._M_insert_range_unique(__first, __last); } /** * @brief %Set copy constructor. * * Whether the allocator is copied depends on the allocator traits. */ #if __cplusplus < 201103L set(const set& __x) : _M_t(__x._M_t) { } #else set(const set&) = default; /** * @brief %Set move constructor * * The newly-created %set contains the exact contents of the moved * instance. The moved instance is a valid, but unspecified, %set. */ set(set&&) = default; /** * @brief Builds a %set from an initializer_list. * @param __l An initializer_list. * @param __comp A comparison functor. * @param __a An allocator object. * * Create a %set consisting of copies of the elements in the list. * This is linear in N if the list is already sorted, and NlogN * otherwise (where N is @a __l.size()). */ set(initializer_list<value_type> __l, const _Compare& __comp = _Compare(), const allocator_type& __a = allocator_type()) : _M_t(__comp, _Key_alloc_type(__a)) { _M_t._M_insert_range_unique(__l.begin(), __l.end()); } /// Allocator-extended default constructor. explicit set(const allocator_type& __a) : _M_t(_Key_alloc_type(__a)) { } /// Allocator-extended copy constructor. set(const set& __x, const allocator_type& __a) : _M_t(__x._M_t, _Key_alloc_type(__a)) { } /// Allocator-extended move constructor. set(set&& __x, const allocator_type& __a) noexcept(is_nothrow_copy_constructible<_Compare>::value && _Alloc_traits::_S_always_equal()) : _M_t(std::move(__x._M_t), _Key_alloc_type(__a)) { } /// Allocator-extended initialier-list constructor. set(initializer_list<value_type> __l, const allocator_type& __a) : _M_t(_Key_alloc_type(__a)) { _M_t._M_insert_range_unique(__l.begin(), __l.end()); } /// Allocator-extended range constructor. template<typename _InputIterator> set(_InputIterator __first, _InputIterator __last, const allocator_type& __a) : _M_t(_Key_alloc_type(__a)) { _M_t._M_insert_range_unique(__first, __last); } /** * The dtor only erases the elements, and note that if the elements * themselves are pointers, the pointed-to memory is not touched in any * way. Managing the pointer is the user's responsibility. */ ~set() = default; #endif /** * @brief %Set assignment operator. * * Whether the allocator is copied depends on the allocator traits. */ #if __cplusplus < 201103L set& operator=(const set& __x) { _M_t = __x._M_t; return *this; } #else set& operator=(const set&) = default; /// Move assignment operator. set& operator=(set&&) = default; /** * @brief %Set list assignment operator. * @param __l An initializer_list. * * This function fills a %set with copies of the elements in the * initializer list @a __l. * * Note that the assignment completely changes the %set and * that the resulting %set's size is the same as the number * of elements assigned. */ set& operator=(initializer_list<value_type> __l) { _M_t._M_assign_unique(__l.begin(), __l.end()); return *this; } #endif // accessors: /// Returns the comparison object with which the %set was constructed. key_compare key_comp() const { return _M_t.key_comp(); } /// Returns the comparison object with which the %set was constructed. value_compare value_comp() const { return _M_t.key_comp(); } /// Returns the allocator object with which the %set was constructed. allocator_type get_allocator() const _GLIBCXX_NOEXCEPT { return allocator_type(_M_t.get_allocator()); } /** * Returns a read-only (constant) iterator that points to the first * element in the %set. Iteration is done in ascending order according * to the keys. */ iterator begin() const _GLIBCXX_NOEXCEPT { return _M_t.begin(); } /** * Returns a read-only (constant) iterator that points one past the last * element in the %set. Iteration is done in ascending order according * to the keys. */ iterator end() const _GLIBCXX_NOEXCEPT { return _M_t.end(); } /** * Returns a read-only (constant) iterator that points to the last * element in the %set. Iteration is done in descending order according * to the keys. */ reverse_iterator rbegin() const _GLIBCXX_NOEXCEPT { return _M_t.rbegin(); } /** * Returns a read-only (constant) reverse iterator that points to the * last pair in the %set. Iteration is done in descending order * according to the keys. */ reverse_iterator rend() const _GLIBCXX_NOEXCEPT { return _M_t.rend(); } #if __cplusplus >= 201103L /** * Returns a read-only (constant) iterator that points to the first * element in the %set. Iteration is done in ascending order according * to the keys. */ iterator cbegin() const noexcept { return _M_t.begin(); } /** * Returns a read-only (constant) iterator that points one past the last * element in the %set. Iteration is done in ascending order according * to the keys. */ iterator cend() const noexcept { return _M_t.end(); } /** * Returns a read-only (constant) iterator that points to the last * element in the %set. Iteration is done in descending order according * to the keys. */ reverse_iterator crbegin() const noexcept { return _M_t.rbegin(); } /** * Returns a read-only (constant) reverse iterator that points to the * last pair in the %set. Iteration is done in descending order * according to the keys. */ reverse_iterator crend() const noexcept { return _M_t.rend(); } #endif /// Returns true if the %set is empty. _GLIBCXX_NODISCARD bool empty() const _GLIBCXX_NOEXCEPT { return _M_t.empty(); } /// Returns the size of the %set. size_type size() const _GLIBCXX_NOEXCEPT { return _M_t.size(); } /// Returns the maximum size of the %set. size_type max_size() const _GLIBCXX_NOEXCEPT { return _M_t.max_size(); } /** * @brief Swaps data with another %set. * @param __x A %set of the same element and allocator types. * * This exchanges the elements between two sets in constant * time. (It is only swapping a pointer, an integer, and an * instance of the @c Compare type (which itself is often * stateless and empty), so it should be quite fast.) Note * that the global std::swap() function is specialized such * that std::swap(s1,s2) will feed to this function. * * Whether the allocators are swapped depends on the allocator traits. */ void swap(set& __x) _GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value) { _M_t.swap(__x._M_t); } // insert/erase #if __cplusplus >= 201103L /** * @brief Attempts to build and insert an element into the %set. * @param __args Arguments used to generate an element. * @return A pair, of which the first element is an iterator that points * to the possibly inserted element, and the second is a bool * that is true if the element was actually inserted. * * This function attempts to build and insert an element into the %set. * A %set relies on unique keys and thus an element is only inserted if * it is not already present in the %set. * * Insertion requires logarithmic time. */ template<typename... _Args> std::pair<iterator, bool> emplace(_Args&&... __args) { return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); } /** * @brief Attempts to insert an element into the %set. * @param __pos An iterator that serves as a hint as to where the * element should be inserted. * @param __args Arguments used to generate the element to be * inserted. * @return An iterator that points to the element with key equivalent to * the one generated from @a __args (may or may not be the * element itself). * * This function is not concerned about whether the insertion took place, * and thus does not return a boolean like the single-argument emplace() * does. Note that the first parameter is only a hint and can * potentially improve the performance of the insertion process. A bad * hint would cause no gains in efficiency. * * For more on @a hinting, see: * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints * * Insertion requires logarithmic time (if the hint is not taken). */ template<typename... _Args> iterator emplace_hint(const_iterator __pos, _Args&&... __args) { return _M_t._M_emplace_hint_unique(__pos, std::forward<_Args>(__args)...); } #endif /** * @brief Attempts to insert an element into the %set. * @param __x Element to be inserted. * @return A pair, of which the first element is an iterator that points * to the possibly inserted element, and the second is a bool * that is true if the element was actually inserted. * * This function attempts to insert an element into the %set. A %set * relies on unique keys and thus an element is only inserted if it is * not already present in the %set. * * Insertion requires logarithmic time. */ std::pair<iterator, bool> insert(const value_type& __x) { std::pair<typename _Rep_type::iterator, bool> __p = _M_t._M_insert_unique(__x); return std::pair<iterator, bool>(__p.first, __p.second); } #if __cplusplus >= 201103L std::pair<iterator, bool> insert(value_type&& __x) { std::pair<typename _Rep_type::iterator, bool> __p = _M_t._M_insert_unique(std::move(__x)); return std::pair<iterator, bool>(__p.first, __p.second); } #endif /** * @brief Attempts to insert an element into the %set. * @param __position An iterator that serves as a hint as to where the * element should be inserted. * @param __x Element to be inserted. * @return An iterator that points to the element with key of * @a __x (may or may not be the element passed in). * * This function is not concerned about whether the insertion took place, * and thus does not return a boolean like the single-argument insert() * does. Note that the first parameter is only a hint and can * potentially improve the performance of the insertion process. A bad * hint would cause no gains in efficiency. * * For more on @a hinting, see: * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints * * Insertion requires logarithmic time (if the hint is not taken). */ iterator insert(const_iterator __position, const value_type& __x) { return _M_t._M_insert_unique_(__position, __x); } #if __cplusplus >= 201103L iterator insert(const_iterator __position, value_type&& __x) { return _M_t._M_insert_unique_(__position, std::move(__x)); } #endif /** * @brief A template function that attempts to insert a range * of elements. * @param __first Iterator pointing to the start of the range to be * inserted. * @param __last Iterator pointing to the end of the range. * * Complexity similar to that of the range constructor. */ template<typename _InputIterator> void insert(_InputIterator __first, _InputIterator __last) { _M_t._M_insert_range_unique(__first, __last); } #if __cplusplus >= 201103L /** * @brief Attempts to insert a list of elements into the %set. * @param __l A std::initializer_list<value_type> of elements * to be inserted. * * Complexity similar to that of the range constructor. */ void insert(initializer_list<value_type> __l) { this->insert(__l.begin(), __l.end()); } #endif #if __cplusplus > 201402L /// Extract a node. node_type extract(const_iterator __pos) { __glibcxx_assert(__pos != end()); return _M_t.extract(__pos); } /// Extract a node. node_type extract(const key_type& __x) { return _M_t.extract(__x); } /// Re-insert an extracted node. insert_return_type insert(node_type&& __nh) { return _M_t._M_reinsert_node_unique(std::move(__nh)); } /// Re-insert an extracted node. iterator insert(const_iterator __hint, node_type&& __nh) { return _M_t._M_reinsert_node_hint_unique(__hint, std::move(__nh)); } template<typename, typename> friend class std::_Rb_tree_merge_helper; template<typename _Compare1> void merge(set<_Key, _Compare1, _Alloc>& __source) { using _Merge_helper = _Rb_tree_merge_helper<set, _Compare1>; _M_t._M_merge_unique(_Merge_helper::_S_get_tree(__source)); } template<typename _Compare1> void merge(set<_Key, _Compare1, _Alloc>&& __source) { merge(__source); } template<typename _Compare1> void merge(multiset<_Key, _Compare1, _Alloc>& __source) { using _Merge_helper = _Rb_tree_merge_helper<set, _Compare1>; _M_t._M_merge_unique(_Merge_helper::_S_get_tree(__source)); } template<typename _Compare1> void merge(multiset<_Key, _Compare1, _Alloc>&& __source) { merge(__source); } #endif // C++17 #if __cplusplus >= 201103L // _GLIBCXX_RESOLVE_LIB_DEFECTS // DR 130. Associative erase should return an iterator. /** * @brief Erases an element from a %set. * @param __position An iterator pointing to the element to be erased. * @return An iterator pointing to the element immediately following * @a __position prior to the element being erased. If no such * element exists, end() is returned. * * This function erases an element, pointed to by the given iterator, * from a %set. Note that this function only erases the element, and * that if the element is itself a pointer, the pointed-to memory is not * touched in any way. Managing the pointer is the user's * responsibility. */ _GLIBCXX_ABI_TAG_CXX11 iterator erase(const_iterator __position) { return _M_t.erase(__position); } #else /** * @brief Erases an element from a %set. * @param position An iterator pointing to the element to be erased. * * This function erases an element, pointed to by the given iterator, * from a %set. Note that this function only erases the element, and * that if the element is itself a pointer, the pointed-to memory is not * touched in any way. Managing the pointer is the user's * responsibility. */ void erase(iterator __position) { _M_t.erase(__position); } #endif /** * @brief Erases elements according to the provided key. * @param __x Key of element to be erased. * @return The number of elements erased. * * This function erases all the elements located by the given key from * a %set. * Note that this function only erases the element, and that if * the element is itself a pointer, the pointed-to memory is not touched * in any way. Managing the pointer is the user's responsibility. */ size_type erase(const key_type& __x) { return _M_t.erase(__x); } #if __cplusplus >= 201103L // _GLIBCXX_RESOLVE_LIB_DEFECTS // DR 130. Associative erase should return an iterator. /** * @brief Erases a [__first,__last) range of elements from a %set. * @param __first Iterator pointing to the start of the range to be * erased. * @param __last Iterator pointing to the end of the range to * be erased. * @return The iterator @a __last. * * This function erases a sequence of elements from a %set. * Note that this function only erases the element, and that if * the element is itself a pointer, the pointed-to memory is not touched * in any way. Managing the pointer is the user's responsibility. */ _GLIBCXX_ABI_TAG_CXX11 iterator erase(const_iterator __first, const_iterator __last) { return _M_t.erase(__first, __last); } #else /** * @brief Erases a [first,last) range of elements from a %set. * @param __first Iterator pointing to the start of the range to be * erased. * @param __last Iterator pointing to the end of the range to * be erased. * * This function erases a sequence of elements from a %set. * Note that this function only erases the element, and that if * the element is itself a pointer, the pointed-to memory is not touched * in any way. Managing the pointer is the user's responsibility. */ void erase(iterator __first, iterator __last) { _M_t.erase(__first, __last); } #endif /** * Erases all elements in a %set. Note that this function only erases * the elements, and that if the elements themselves are pointers, the * pointed-to memory is not touched in any way. Managing the pointer is * the user's responsibility. */ void clear() _GLIBCXX_NOEXCEPT { _M_t.clear(); } // set operations: //@{ /** * @brief Finds the number of elements. * @param __x Element to located. * @return Number of elements with specified key. * * This function only makes sense for multisets; for set the result will * either be 0 (not present) or 1 (present). */ size_type count(const key_type& __x) const { return _M_t.find(__x) == _M_t.end() ? 0 : 1; } #if __cplusplus > 201103L template<typename _Kt> auto count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x)) { return _M_t._M_count_tr(__x); } #endif //@} #if __cplusplus > 201703L //@{ /** * @brief Finds whether an element with the given key exists. * @param __x Key of elements to be located. * @return True if there is an element with the specified key. */ bool contains(const key_type& __x) const { return _M_t.find(__x) != _M_t.end(); } template<typename _Kt> auto contains(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x), void(), true) { return _M_t._M_find_tr(__x) != _M_t.end(); } //@} #endif // _GLIBCXX_RESOLVE_LIB_DEFECTS // 214. set::find() missing const overload //@{ /** * @brief Tries to locate an element in a %set. * @param __x Element to be located. * @return Iterator pointing to sought-after element, or end() if not * found. * * This function takes a key and tries to locate the element with which * the key matches. If successful the function returns an iterator * pointing to the sought after element. If unsuccessful it returns the * past-the-end ( @c end() ) iterator. */ iterator find(const key_type& __x) { return _M_t.find(__x); } const_iterator find(const key_type& __x) const { return _M_t.find(__x); } #if __cplusplus > 201103L template<typename _Kt> auto find(const _Kt& __x) -> decltype(iterator{_M_t._M_find_tr(__x)}) { return iterator{_M_t._M_find_tr(__x)}; } template<typename _Kt> auto find(const _Kt& __x) const -> decltype(const_iterator{_M_t._M_find_tr(__x)}) { return const_iterator{_M_t._M_find_tr(__x)}; } #endif //@} //@{ /** * @brief Finds the beginning of a subsequence matching given key. * @param __x Key to be located. * @return Iterator pointing to first element equal to or greater * than key, or end(). * * This function returns the first element of a subsequence of elements * that matches the given key. If unsuccessful it returns an iterator * pointing to the first element that has a greater value than given key * or end() if no such element exists. */ iterator lower_bound(const key_type& __x) { return _M_t.lower_bound(__x); } const_iterator lower_bound(const key_type& __x) const { return _M_t.lower_bound(__x); } #if __cplusplus > 201103L template<typename _Kt> auto lower_bound(const _Kt& __x) -> decltype(iterator(_M_t._M_lower_bound_tr(__x))) { return iterator(_M_t._M_lower_bound_tr(__x)); } template<typename _Kt> auto lower_bound(const _Kt& __x) const -> decltype(const_iterator(_M_t._M_lower_bound_tr(__x))) { return const_iterator(_M_t._M_lower_bound_tr(__x)); } #endif //@} //@{ /** * @brief Finds the end of a subsequence matching given key. * @param __x Key to be located. * @return Iterator pointing to the first element * greater than key, or end(). */ iterator upper_bound(const key_type& __x) { return _M_t.upper_bound(__x); } const_iterator upper_bound(const key_type& __x) const { return _M_t.upper_bound(__x); } #if __cplusplus > 201103L template<typename _Kt> auto upper_bound(const _Kt& __x) -> decltype(iterator(_M_t._M_upper_bound_tr(__x))) { return iterator(_M_t._M_upper_bound_tr(__x)); } template<typename _Kt> auto upper_bound(const _Kt& __x) const -> decltype(iterator(_M_t._M_upper_bound_tr(__x))) { return const_iterator(_M_t._M_upper_bound_tr(__x)); } #endif //@} //@{ /** * @brief Finds a subsequence matching given key. * @param __x Key to be located. * @return Pair of iterators that possibly points to the subsequence * matching given key. * * This function is equivalent to * @code * std::make_pair(c.lower_bound(val), * c.upper_bound(val)) * @endcode * (but is faster than making the calls separately). * * This function probably only makes sense for multisets. */ std::pair<iterator, iterator> equal_range(const key_type& __x) { return _M_t.equal_range(__x); } std::pair<const_iterator, const_iterator> equal_range(const key_type& __x) const { return _M_t.equal_range(__x); } #if __cplusplus > 201103L template<typename _Kt> auto equal_range(const _Kt& __x) -> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x))) { return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); } template<typename _Kt> auto equal_range(const _Kt& __x) const -> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x))) { return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); } #endif //@} template<typename _K1, typename _C1, typename _A1> friend bool operator==(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&); #if __cpp_lib_three_way_comparison template<typename _K1, typename _C1, typename _A1> friend __detail::__synth3way_t<_K1> operator<=>(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&); #else template<typename _K1, typename _C1, typename _A1> friend bool operator<(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&); #endif }; #if __cpp_deduction_guides >= 201606 template<typename _InputIterator, typename _Compare = less<typename iterator_traits<_InputIterator>::value_type>, typename _Allocator = allocator<typename iterator_traits<_InputIterator>::value_type>, typename = _RequireInputIter<_InputIterator>, typename = _RequireNotAllocator<_Compare>, typename = _RequireAllocator<_Allocator>> set(_InputIterator, _InputIterator, _Compare = _Compare(), _Allocator = _Allocator()) -> set<typename iterator_traits<_InputIterator>::value_type, _Compare, _Allocator>; template<typename _Key, typename _Compare = less<_Key>, typename _Allocator = allocator<_Key>, typename = _RequireNotAllocator<_Compare>, typename = _RequireAllocator<_Allocator>> set(initializer_list<_Key>, _Compare = _Compare(), _Allocator = _Allocator()) -> set<_Key, _Compare, _Allocator>; template<typename _InputIterator, typename _Allocator, typename = _RequireInputIter<_InputIterator>, typename = _RequireAllocator<_Allocator>> set(_InputIterator, _InputIterator, _Allocator) -> set<typename iterator_traits<_InputIterator>::value_type, less<typename iterator_traits<_InputIterator>::value_type>, _Allocator>; template<typename _Key, typename _Allocator, typename = _RequireAllocator<_Allocator>> set(initializer_list<_Key>, _Allocator) -> set<_Key, less<_Key>, _Allocator>; #endif // deduction guides /** * @brief Set equality comparison. * @param __x A %set. * @param __y A %set of the same type as @a x. * @return True iff the size and elements of the sets are equal. * * This is an equivalence relation. It is linear in the size of the sets. * Sets are considered equivalent if their sizes are equal, and if * corresponding elements compare equal. */ template<typename _Key, typename _Compare, typename _Alloc> inline bool operator==(const set<_Key, _Compare, _Alloc>& __x, const set<_Key, _Compare, _Alloc>& __y) { return __x._M_t == __y._M_t; } #if __cpp_lib_three_way_comparison /** * @brief Set ordering relation. * @param __x A `set`. * @param __y A `set` of the same type as `x`. * @return A value indicating whether `__x` is less than, equal to, * greater than, or incomparable with `__y`. * * This is a total ordering relation. It is linear in the size of the * maps. The elements must be comparable with @c <. * * See `std::lexicographical_compare_three_way()` for how the determination * is made. This operator is used to synthesize relational operators like * `<` and `>=` etc. */ template<typename _Key, typename _Compare, typename _Alloc> inline __detail::__synth3way_t<_Key> operator<=>(const set<_Key, _Compare, _Alloc>& __x, const set<_Key, _Compare, _Alloc>& __y) { return __x._M_t <=> __y._M_t; } #else /** * @brief Set ordering relation. * @param __x A %set. * @param __y A %set of the same type as @a x. * @return True iff @a __x is lexicographically less than @a __y. * * This is a total ordering relation. It is linear in the size of the * sets. The elements must be comparable with @c <. * * See std::lexicographical_compare() for how the determination is made. */ template<typename _Key, typename _Compare, typename _Alloc> inline bool operator<(const set<_Key, _Compare, _Alloc>& __x, const set<_Key, _Compare, _Alloc>& __y) { return __x._M_t < __y._M_t; } /// Returns !(x == y). template<typename _Key, typename _Compare, typename _Alloc> inline bool operator!=(const set<_Key, _Compare, _Alloc>& __x, const set<_Key, _Compare, _Alloc>& __y) { return !(__x == __y); } /// Returns y < x. template<typename _Key, typename _Compare, typename _Alloc> inline bool operator>(const set<_Key, _Compare, _Alloc>& __x, const set<_Key, _Compare, _Alloc>& __y) { return __y < __x; } /// Returns !(y < x) template<typename _Key, typename _Compare, typename _Alloc> inline bool operator<=(const set<_Key, _Compare, _Alloc>& __x, const set<_Key, _Compare, _Alloc>& __y) { return !(__y < __x); } /// Returns !(x < y) template<typename _Key, typename _Compare, typename _Alloc> inline bool operator>=(const set<_Key, _Compare, _Alloc>& __x, const set<_Key, _Compare, _Alloc>& __y) { return !(__x < __y); } #endif // three-way comparison /// See std::set::swap(). template<typename _Key, typename _Compare, typename _Alloc> inline void swap(set<_Key, _Compare, _Alloc>& __x, set<_Key, _Compare, _Alloc>& __y) _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y))) { __x.swap(__y); } _GLIBCXX_END_NAMESPACE_CONTAINER #if __cplusplus > 201402L // Allow std::set access to internals of compatible sets. template<typename _Val, typename _Cmp1, typename _Alloc, typename _Cmp2> struct _Rb_tree_merge_helper<_GLIBCXX_STD_C::set<_Val, _Cmp1, _Alloc>, _Cmp2> { private: friend class _GLIBCXX_STD_C::set<_Val, _Cmp1, _Alloc>; static auto& _S_get_tree(_GLIBCXX_STD_C::set<_Val, _Cmp2, _Alloc>& __set) { return __set._M_t; } static auto& _S_get_tree(_GLIBCXX_STD_C::multiset<_Val, _Cmp2, _Alloc>& __set) { return __set._M_t; } }; #endif // C++17 _GLIBCXX_END_NAMESPACE_VERSION } //namespace std #endif /* _STL_SET_H */